File size: 3,160 Bytes
f1cf069
d8e65e1
 
f1cf069
 
d8e65e1
f1cf069
fd164bf
f1cf069
d8e65e1
9f60c11
 
 
f1cf069
 
 
d8e65e1
f1cf069
 
 
fd164bf
f1cf069
d8e65e1
 
f1cf069
 
 
 
fd164bf
f1cf069
fd164bf
 
 
 
 
 
 
 
 
 
 
 
 
d382182
 
 
 
 
 
 
 
 
 
 
 
49ae0de
 
 
 
 
 
 
 
 
 
 
 
9f60c11
f1cf069
 
 
 
 
d8e65e1
f1cf069
9f60c11
 
 
 
 
 
f1cf069
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f60c11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
language:
- fr
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
base_model: openai/whisper-small
datasets:
- mozilla-foundation/common_voice_17_0
- google/fleurs
- facebook/multilingual_librispeech
- facebook/voxpopuli
metrics:
- wer
model-index:
- name: Whisper Small Mixed-French
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: mozilla-foundation/common_voice_17_0 fr
      type: mozilla-foundation/common_voice_17_0
      config: fr
      split: test
      args: fr
    metrics:
    - type: wer
      value: 15.015790814663829
      name: Wer
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
      config: fr_fr
      split: test
    metrics:
    - type: wer
      value: 12.02
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: facebook/multilingual_librispeech
      type: facebook/multilingual_librispeech
      config: french
      split: test
    metrics:
    - type: wer
      value: 10.01
      name: WER
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: facebook/voxpopuli
      type: facebook/voxpopuli
      config: fr
      split: test
    metrics:
    - type: wer
      value: 12.23
      name: WER
pipeline_tag: automatic-speech-recognition
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Mixed-French

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fr datasets:
- mozilla-foundation/common_voice_17_0
- google/fleurs
- facebook/multilingual_librispeech
- facebook/voxpopuli

It achieves the following results on the evaluation set:
- Loss: 0.3092
- Wer: 15.0158

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.187         | 0.2   | 1000 | 0.3653          | 17.3498 |
| 0.1445        | 0.4   | 2000 | 0.3379          | 16.0480 |
| 0.1659        | 0.6   | 3000 | 0.3255          | 15.3772 |
| 0.1594        | 0.8   | 4000 | 0.3136          | 15.1959 |
| 0.1371        | 1.0   | 5000 | 0.3092          | 15.0158 |


### Framework versions

- Transformers 4.42.0.dev0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1