Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
---
|
4 |
+
|
5 |
+
Microsoft Table Transformer Table Structure Recognition trained on Pubtables and Fintabnet
|
6 |
+
|
7 |
+
If you do not have the deepdoctection Profile of the model, please add:
|
8 |
+
|
9 |
+
|
10 |
+
```python
|
11 |
+
import deepdoctection as dd
|
12 |
+
|
13 |
+
dd.ModelCatalog.register("deepdoctection/tatr_tab_struct_v2/pytorch_model.bin", dd.ModelProfile(
|
14 |
+
name="deepdoctection/tatr_tab_struct_v2/pytorch_model.bin",
|
15 |
+
description="Table Transformer (DETR) model trained on PubTables1M. It was introduced in the paper "
|
16 |
+
"Aligning benchmark datasets for table structure recognition by Smock et "
|
17 |
+
"al. This model is devoted to table structure recognition and assumes to receive a slightly cropped"
|
18 |
+
"table as input. It will predict rows, column and spanning cells. Use a padding of around 5 pixels",
|
19 |
+
size=[115511753],
|
20 |
+
tp_model=False,
|
21 |
+
config="deepdoctection/tatr_tab_struct_v2/config.json",
|
22 |
+
preprocessor_config="deepdoctection/tatr_tab_struct_v2/preprocessor_config.json",
|
23 |
+
hf_repo_id="deepdoctection/tatr_tab_struct_v2",
|
24 |
+
hf_model_name="pytorch_model.bin",
|
25 |
+
hf_config_file=["config.json", "preprocessor_config.json"],
|
26 |
+
categories={
|
27 |
+
"1": dd.LayoutType.table,
|
28 |
+
"2": dd.LayoutType.column,
|
29 |
+
"3": dd.LayoutType.row,
|
30 |
+
"4": dd.CellType.column_header,
|
31 |
+
"5": dd.CellType.projected_row_header,
|
32 |
+
"6": dd.CellType.spanning,
|
33 |
+
},
|
34 |
+
dl_library="PT",
|
35 |
+
model_wrapper="HFDetrDerivedDetector",
|
36 |
+
))
|
37 |
+
```
|
38 |
+
|
39 |
+
When running the model within the deepdoctection analyzer, adjust the segmentation parameters in order to get better predictions.
|
40 |
+
|
41 |
+
```python
|
42 |
+
import deepdoctection as dd
|
43 |
+
|
44 |
+
analyzer = dd.get_dd_analyzer(reset_config_file=True, config_overwrite=["PT.ITEM.WEIGHTS=microsoft/tatr_v1/pytorch_model.bin",
|
45 |
+
"PT.ITEM.FILTER=['table']",
|
46 |
+
"PT.ITEM.PAD.TOP=5",
|
47 |
+
"PT.ITEM.PAD.RIGHT=5",
|
48 |
+
"PT.ITEM.PAD.BOTTOM=5",
|
49 |
+
"PT.ITEM.PAD.LEFT=5",
|
50 |
+
"SEGMENTATION.THRESHOLD_ROWS=0.9",
|
51 |
+
"SEGMENTATION.THRESHOLD_COLS=0.9",
|
52 |
+
"SEGMENTATION.REMOVE_IOU_THRESHOLD_ROWS=0.3",
|
53 |
+
"SEGMENTATION.REMOVE_IOU_THRESHOLD_COLS=0.3",
|
54 |
+
"WORD_MATCHING.MAX_PARENT_ONLY=True"])
|
55 |
+
```
|
56 |
+
|