Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CCIP
|
2 |
+
CCIP(Contrastive Anime Character Image Pre-Training) is a model to calculuate the visual similarity between anime characters in two images. (limited to images containing only a single anime character). More similar the characters between two images are, higher score it should have.
|
3 |
+
|
4 |
+
# Usage
|
5 |
+
Using CCIP with [imgutils](https://dghs-imgutils.deepghs.org/main/tutorials/installation/index.html)
|
6 |
+
|
7 |
+
![](https://dghs-imgutils.deepghs.org/main/_images/ccip_small.plot.py.svg)
|
8 |
+
Calculuate character similarity between images:
|
9 |
+
```
|
10 |
+
from imgutils.metrics import ccip_batch_differences
|
11 |
+
|
12 |
+
ccip_batch_differences(['ccip/1.jpg', 'ccip/2.jpg', 'ccip/6.jpg', 'ccip/7.jpg'])
|
13 |
+
array([[6.5350548e-08, 1.6583106e-01, 4.2947042e-01, 4.0375218e-01],
|
14 |
+
[1.6583106e-01, 9.8025822e-08, 4.3715334e-01, 4.0748104e-01],
|
15 |
+
[4.2947042e-01, 4.3715334e-01, 3.2675274e-08, 3.9229470e-01],
|
16 |
+
[4.0375218e-01, 4.0748104e-01, 3.9229470e-01, 6.5350548e-08]],
|
17 |
+
dtype=float32)
|
18 |
+
```
|
19 |
+
|
20 |
+
[More detailed instruction](https://dghs-imgutils.deepghs.org/main/api_doc/metrics/ccip.html)
|
21 |
+
|
22 |
+
# Performence
|
23 |
+
| Model | F1 Score | Precision | Recall | Threshold | Cluster_2 | Cluster_Free |
|
24 |
+
|:-----------------------------------:|:----------:|:-----------:|:--------:|:-----------:|:-----------:|:--------------:|
|
25 |
+
| ccip-caformer_b36-24 | 0.940925 | 0.938254 | 0.943612 | 0.213231 | 0.89508 | 0.957017 |
|
26 |
+
| ccip-caformer-24-randaug-pruned | 0.917211 | 0.933481 | 0.901499 | 0.178475 | 0.890366 | 0.922375 |
|
27 |
+
| ccip-v2-caformer_s36-10 | 0.906422 | 0.932779 | 0.881513 | 0.207757 | 0.874592 | 0.89241 |
|
28 |
+
| ccip-caformer-6-randaug-pruned_fp32 | 0.878403 | 0.893648 | 0.863669 | 0.195122 | 0.810176 | 0.897904 |
|
29 |
+
| ccip-caformer-5_fp32 | 0.864363 | 0.90155 | 0.830121 | 0.183973 | 0.792051 | 0.862289 |
|
30 |
+
| ccip-caformer-4_fp32 | 0.844967 | 0.870553 | 0.820842 | 0.18367 | 0.795565 | 0.868133 |
|
31 |
+
| ccip-caformer_query-12 | 0.823928 | 0.871122 | 0.781585 | 0.141308 | 0.787237 | 0.809426 |
|
32 |
+
| ccip-caformer-23_randaug_fp32 | 0.81625 | 0.854134 | 0.781585 | 0.136797 | 0.745697 | 0.8068 |
|
33 |
+
| ccip-caformer-2-randaug-pruned_fp32 | 0.78561 | 0.800148 | 0.771592 | 0.171053 | 0.686617 | 0.728195 |
|
34 |
+
| ccip-caformer-2_fp32 | 0.755125 | 0.790172 | 0.723055 | 0.141275 | 0.64977 | 0.718516 |
|
35 |
+
|
36 |
+
* The calculation of `F1 Score`, `Precision`, and `Recall` considers "the characters in both images are the same" as a positive case. `Threshold` is determined by finding the maximum value on the F1 Score curve.
|
37 |
+
* `Cluster_2` represents the approximate optimal clustering solution obtained by tuning the eps value in DBSCAN clustering algorithm with min_samples set to `2`, and evaluating the similarity between the obtained clusters and the true distribution using the `random_adjust_score`.
|
38 |
+
* `Cluster_Free` represents the approximate optimal solution obtained by tuning the `max_eps` and `min_samples` values in the OPTICS clustering algorithm, and evaluating the similarity between the obtained clusters and the true distribution using the `random_adjust_score`.
|
39 |
+
|
40 |
+
![operations benchmark](https://dghs-imgutils.deepghs.org/main/_images/ccip_benchmark.plot.py.svg)
|
41 |
+
|
42 |
+
# Citation
|
43 |
+
```bibtex
|
44 |
+
@misc{CCIP,
|
45 |
+
title={Contrastive Anime Character Image Pre-Training},
|
46 |
+
author={Ziyi Dong and narugo1992},
|
47 |
+
year={2024},
|
48 |
+
howpublished={\url{https://huggingface.co/deepghs/ccip}}
|
49 |
+
}
|
50 |
+
```
|