File size: 15,500 Bytes
003ee92
 
 
 
 
 
ed322a8
 
 
 
 
003ee92
ed322a8
 
003ee92
 
ed322a8
 
003ee92
ef87e36
ed322a8
003ee92
 
ed322a8
003ee92
ed322a8
003ee92
 
 
ed322a8
003ee92
 
ed322a8
003ee92
 
ed322a8
003ee92
 
 
 
 
ed322a8
003ee92
 
ed322a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89a2dbc
08529b4
4621eeb
 
89a2dbc
 
 
ed322a8
08529b4
ed322a8
935c70a
08529b4
ed322a8
08529b4
 
89a2dbc
 
08529b4
ed322a8
08529b4
 
 
 
 
 
198c4d1
ed322a8
 
 
 
08529b4
ed322a8
e91ebd8
08529b4
 
 
 
 
 
8edea68
08529b4
 
 
 
 
 
 
ed322a8
 
 
 
 
e91ebd8
08529b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ed322a8
08529b4
ed322a8
 
 
 
 
 
 
 
be9443d
 
 
 
 
 
 
 
 
1e90cb3
 
ed322a8
 
 
 
 
 
 
 
1e90cb3
ed322a8
1e90cb3
ed322a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e90cb3
ed322a8
1e90cb3
ed322a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e90cb3
 
ed322a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
08529b4
 
 
 
 
 
 
 
 
 
 
 
 
be9443d
ed322a8
 
be9443d
ed322a8
 
 
 
 
 
 
 
 
 
 
be9443d
ed322a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
---
license: other
license_name: deepseek
license_link: https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL
---

<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<!-- markdownlint-disable no-duplicate-header -->

<div align="center">
  <img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" />
</div>
<hr>
<div align="center" style="line-height: 1;">
  <a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
    <img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
    <img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20V2-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
    <img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

<div align="center" style="line-height: 1;">
  <a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
    <img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
    <img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
    <img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

<div align="center" style="line-height: 1;">
  <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-CODE" style="margin: 2px;">
    <img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
  </a>
  <a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL" style="margin: 2px;">
    <img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
  </a>
</div>

<p align="center">
  <a href="#2-model-downloads">Model Download</a> |
  <a href="#3-evaluation-results">Evaluation Results</a> |
  <a href="#4-model-architecture">Model Architecture</a> |
  <a href="#6-api-platform">API Platform</a> |
  <a href="#8-license">License</a> |
  <a href="#9-citation">Citation</a>
</p>

<p align="center">
  <a href="https://arxiv.org/abs/2405.04434"><b>Paper Link</b>👁️</a>
</p>

# DeepSeek-V2:  A Strong, Economical, and Efficient Mixture-of-Experts Language Model

## 1. Introduction

Last week, the release and buzz around DeepSeek-V2 have ignited widespread interest in MLA (Multi-head Latent Attention)! Many in the community suggested open-sourcing a smaller MoE model for in-depth research. And now DeepSeek-V2-Lite comes out:

- 16B total params, 2.4B active params, scratch training with 5.7T tokens
- Outperforms 7B dense and 16B MoE on many English & Chinese benchmarks
- Deployable on single 40G GPU, fine-tunable on 8x80G GPUs

DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. DeepSeek-V2 adopts innovative architectures including Multi-head Latent Attention (MLA) and DeepSeekMoE. MLA guarantees efficient inference through significantly compressing the Key-Value (KV) cache into a latent vector, while DeepSeekMoE enables training strong models at an economical cost through sparse computation. 

## 2. News

- 2024.05.16: We released the DeepSeek-V2-Lite.
- 2024.05.06: We released the DeepSeek-V2.

## 3. Model Downloads

With DeepSeek-V2, we are open-sourcing base and chat models across two sizes:

<div align="center">

| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download** |
| :------------: | :------------: | :------------: | :------------: | :------------: |
| DeepSeek-V2-Lite | 16B | 2.4B | 32k   | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite)   |
| DeepSeek-V2-Lite-Chat (SFT)   | 16B | 2.4B | 32k   | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat)   |
| DeepSeek-V2   | 236B | 21B |  128k   | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2)   |
| DeepSeek-V2-Chat (RL)   | 236B | 21B |  128k   | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat)   |

</div>

Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively.

## 4. Evaluation Results
### Base Model
#### Standard Benchmark
<div align="center">

| **Benchmark** | **Domain** | **DeepSeek 7B (Dense)** | **DeepSeekMoE 16B** | **DeepSeek-V2-Lite (MoE-16B)** |
|:-------------:|:----------:|:--------------:|:-----------------:|:--------------------------:|
| **Architecture**      | -    | MHA+Dense           | MHA+MoE              | MLA+MoE                       |
| **MMLU**      | English    | 48.2           | 45.0              | 58.3                       |
| **BBH**       | English    | 39.5           | 38.9              | 44.1                       |
| **C-Eval**    | Chinese    | 45.0           | 40.6              | 60.3                       |
| **CMMLU**     | Chinese    | 47.2           | 42.5              | 64.3                       |
| **HumanEval** | Code       | 26.2           | 26.8              | 29.9                       |
| **MBPP**      | Code       | 39.0           | 39.2              | 43.2                       |
| **GSM8K**     | Math       | 17.4           | 18.8              | 41.1                       |
| **Math**      | Math       | 3.3           | 4.3             | 17.1                       |

</div>
For more evaluation details, such as few-shot settings and prompts, please check our paper. 


### Chat Model
#### Standard Benchmark

<div align="center">

| Benchmark | Domain         | DeepSeek 7B Chat (SFT) | DeepSeekMoE 16B Chat (SFT) | DeepSeek-V2-Lite 16B Chat (SFT) |
|:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:|
| **MMLU**      | English        | 49.7             | 47.2          | 55.7                |
| **BBH**       | English        | 43.1             | 42.2          | 48.1                |
| **C-Eval**    | Chinese        | 44.7             | 40.0          | 60.1                |
| **CMMLU**     | Chinese        | 51.2             | 49.3          | 62.5                |
| **HumanEval** | Code           | 45.1             | 45.7          | 57.3                |
| **MBPP**      | Code           | 39.0             | 46.2          | 45.8                |
| **GSM8K**     | Math           | 62.6             | 62.2          | 72.0                |
| **Math**      | Math           | 14.7             | 15.2          | 27.9                |

</div>


## 5. Model Architecture
DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference: 
- For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference. 
- For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs. 

<p align="center">
  <img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" />
</p>

DeepSeek-V2-Lite has 27 layers and a hidden dimension of 2048. It also employs MLA and has 16 attention heads, where each head has a dimension of 128. Its KV compression dimension is 512, but slightly different from DeepSeek-V2, it does not compress the queries. For the decoupled queries and key, it has a per-head dimension of 64. DeepSeek-V2-Lite also employs DeepSeekMoE, and all FFNs except for the first layer are replaced with MoE layers. Each MoE layer consists of 2 shared experts and 64 routed experts, where the intermediate hidden dimension of each expert is 1408. Among the routed experts, 6 experts will be activated for each token. Under this configuration, DeepSeek-V2-Lite comprises 15.7B total parameters, of which 2.4B are activated for each token.


## 6. Training Details
DeepSeek-V2-Lite is also trained from scratch on the same pre-training corpus of DeepSeek-V2, which is not polluted by any SFT data. It uses the AdamW optimizer with hyper-parameters set to $\beta_1=0.9$, $\beta_2=0.95$, and $\mathrm{weight_decay}=0.1$. The learning rate is scheduled using a warmup-and-step-decay strategy. Initially, the learning rate linearly increases from 0 to the maximum value during the first 2K steps. Subsequently, the learning rate is multiplied by 0.316 after training about 80% of tokens, and again by 0.316 after training about 90% of tokens. The maximum learning rate is set to $4.2 \times 10^{-4}$, and the gradient clipping norm is set to 1.0. We do not employ the batch size scheduling strategy for it, and it is trained with a constant batch size of 4608 sequences. During pre-training, we set the maximum sequence length to 4K, and train DeepSeek-V2-Lite on 5.7T tokens. We leverage pipeline parallelism to deploy different layers of it on different devices, but for each layer, all experts will be deployed on the same device. Therefore, we only employ a small expert-level balance loss with $\alpha_{1}=0.001$, and do not employ device-level balance loss and communication balance loss for it. After pre-training, we also perform long-context extension, SFT for DeepSeek-V2-Lite and get a chat model called DeepSeek-V2-Lite Chat.



## 7. How to run locally

**To utilize DeepSeek-V2-Lite in BF16 format for inference, 40GB*1 GPU is required.**
### Inference with Huggingface's Transformers
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.

#### Text Completion
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/DeepSeek-V2-Lite"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```

#### Chat Completion
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig

model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id

messages = [
    {"role": "user", "content": "Write a piece of quicksort code in C++"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)

result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
```

The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.

An example of chat template is as belows:

```bash
<|begin▁of▁sentence|>User: {user_message_1}

Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}

Assistant:
```

You can also add an optional system message:

```bash
<|begin▁of▁sentence|>{system_message}

User: {user_message_1}

Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}

Assistant:
```

### Inference with vLLM (recommended)
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.

```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

max_model_len, tp_size = 8192, 1
model_name = "deepseek-ai/DeepSeek-V2-Lite-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])

messages_list = [
    [{"role": "user", "content": "Who are you?"}],
    [{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}],
    [{"role": "user", "content": "Write a piece of quicksort code in C++."}],
]

prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]

outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)

generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```

### LangChain Support
Since our API is compatible with OpenAI, you can easily use it in [langchain](https://www.langchain.com/).
Here is an example:

```
from langchain_openai import ChatOpenAI
llm = ChatOpenAI(
    model='deepseek-chat',
    openai_api_key=<your-deepseek-api-key>,
    openai_api_base='https://api.deepseek.com/v1',
    temperature=0.85,
    max_tokens=8000)
``` 
## 8. License
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use.

## 9. Citation
```
@misc{deepseekv2,
      title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model}, 
      author={DeepSeek-AI},
      year={2024},
      eprint={2405.04434},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## 10. Contact
If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).