File size: 16,103 Bytes
f9b5644 b3333a6 f9b5644 b3333a6 f9b5644 1142605 b3333a6 f9b5644 b3333a6 f9b5644 b3333a6 f9b5644 b3333a6 f9b5644 b3333a6 f9b5644 b3333a6 f9b5644 b3333a6 f9b5644 b3333a6 f9b5644 b3333a6 dd5954a b3333a6 3d3dec2 b3333a6 3d3dec2 b3333a6 d734100 b3333a6 dd5954a b3333a6 3d3dec2 b3333a6 3d445e7 b3333a6 3d445e7 b3333a6 dd5954a b3333a6 3d3dec2 b3333a6 3d3dec2 b3333a6 3d3dec2 b3333a6 dd5954a b3333a6 70cd796 b3333a6 dd5954a b3333a6 dd5954a b3333a6 3b7037d b3333a6 e0828e3 b3333a6 3b7037d b3333a6 e8c35ff b3333a6 e0828e3 b3333a6 e8c35ff b3333a6 e8c35ff b3333a6 e8c35ff b3333a6 e8c35ff b3333a6 3b7037d b3333a6 1e51912 b3333a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 |
---
license: other
license_name: deepseek
license_link: https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL
---
<!-- markdownlint-disable first-line-h1 -->
<!-- markdownlint-disable html -->
<!-- markdownlint-disable no-duplicate-header -->
<div align="center">
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/logo.svg?raw=true" width="60%" alt="DeepSeek-V2" />
</div>
<hr>
<div align="center" style="line-height: 1;">
<a href="https://www.deepseek.com/" target="_blank" style="margin: 2px;">
<img alt="Homepage" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/badge.svg?raw=true" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://chat.deepseek.com/" target="_blank" style="margin: 2px;">
<img alt="Chat" src="https://img.shields.io/badge/🤖%20Chat-DeepSeek%20LLM-536af5?color=536af5&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://huggingface.co/deepseek-ai" target="_blank" style="margin: 2px;">
<img alt="Hugging Face" src="https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-DeepSeek%20AI-ffc107?color=ffc107&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="https://discord.gg/Tc7c45Zzu5" target="_blank" style="margin: 2px;">
<img alt="Discord" src="https://img.shields.io/badge/Discord-DeepSeek%20AI-7289da?logo=discord&logoColor=white&color=7289da" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/qr.jpeg?raw=true" target="_blank" style="margin: 2px;">
<img alt="Wechat" src="https://img.shields.io/badge/WeChat-DeepSeek%20AI-brightgreen?logo=wechat&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://twitter.com/deepseek_ai" target="_blank" style="margin: 2px;">
<img alt="Twitter Follow" src="https://img.shields.io/badge/Twitter-deepseek_ai-white?logo=x&logoColor=white" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<div align="center" style="line-height: 1;">
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-CODE" style="margin: 2px;">
<img alt="Code License" src="https://img.shields.io/badge/Code_License-MIT-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
</a>
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/LICENSE-MODEL" style="margin: 2px;">
<img alt="Model License" src="https://img.shields.io/badge/Model_License-Model_Agreement-f5de53?&color=f5de53" style="display: inline-block; vertical-align: middle;"/>
</a>
</div>
<p align="center">
<a href="#2-model-downloads">Model Download</a> |
<a href="#3-evaluation-results">Evaluation Results</a> |
<a href="#4-model-architecture">Model Architecture</a> |
<a href="#6-api-platform">API Platform</a> |
<a href="#8-license">License</a> |
<a href="#9-citation">Citation</a>
</p>
<p align="center">
<a href="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/deepseek-v2-tech-report.pdf"><b>Paper Link</b>👁️</a>
</p>
# DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model
## 1. Introduction
Today, we’re introducing DeepSeek-V2, a strong Mixture-of-Experts (MoE) language model characterized by economical training and efficient inference. It comprises 236B total parameters, of which 21B are activated for each token. Compared with DeepSeek 67B, DeepSeek-V2 achieves stronger performance, and meanwhile saves 42.5% of training costs, reduces the KV cache by 93.3%, and boosts the maximum generation throughput to 5.76 times.
<p align="center">
<div style="display: flex; justify-content: center;">
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/activationparameters.png?raw=true" style="height:300px; width:auto; margin-right:10px">
<img src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/trainingcost.png?raw=true" style="height:300px; width:auto; margin-left:10px">
</div>
</p>
We pretrained DeepSeek-V2 on a diverse and high-quality corpus comprising 8.1 trillion tokens. This comprehensive pretraining was followed by a process of Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) to fully unleash the model's capabilities. The evaluation results validate the effectiveness of our approach as DeepSeek-V2 achieves remarkable performance on both standard benchmarks and open-ended generation evaluation.
## 2. Model Downloads
<div align="center">
| **Model** | **Context Length** | **Download** |
| :------------: | :------------: | :------------: |
| DeepSeek-V2 | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2) |
| DeepSeek-V2-Chat (RL) | 128k | [🤗 HuggingFace](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat) |
</div>
Due to the constraints of HuggingFace, the open-source code currently experiences slower performance than our internal codebase when running on GPUs with Huggingface. To facilitate the efficient execution of our model, we offer a dedicated vllm solution that optimizes performance for running our model effectively.
## 3. Evaluation Results
### Base Model
#### Standard Benchmark
<div align="center">
| **Benchmark** | **Domain** | **LLaMA3 70B** | **Mixtral 8x22B** | **DeepSeek-V1 (Dense-67B)** | **DeepSeek-V2 (MoE-236B)** |
|:-----------:|:--------:|:------------:|:---------------:|:-------------------------:|:------------------------:|
| **MMLU** | English | 78.9 | 77.6 | 71.3 | 78.5 |
| **BBH** | English | 81.0 | 78.9 | 68.7 | 78.9 |
| **C-Eval** | Chinese | 67.5 | 58.6 | 66.1 | 81.7 |
| **CMMLU** | Chinese | 69.3 | 60.0 | 70.8 | 84.0 |
| **HumanEval** | Code | 48.2 | 53.1 | 45.1 | 48.8 |
| **MBPP** | Code | 68.6 | 64.2 | 57.4 | 66.6 |
| **GSM8K** | Math | 83.0 | 80.3 | 63.4 | 79.2 |
| **Math** | Math | 42.2 | 42.5 | 18.7 | 43.6 |
</div>
For more evaluation details, such as few-shot settings and prompts, please check our paper.
#### Context Window
<p align="center">
<img width="80%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/niah.png?raw=true">
</p>
Evaluation results on the ``Needle In A Haystack`` (NIAH) tests. DeepSeek-V2 performs well across all context window lengths up to **128K**.
### Chat Model
#### Standard Benchmark
<div align="center">
| Benchmark | Domain | QWen1.5 72B Chat | Mixtral 8x22B | LLaMA3 70B Instruct | DeepSeek-V1 Chat (SFT) | DeepSeek-V2 Chat (SFT) | DeepSeek-V2 Chat (RL) |
|:-----------:|:----------------:|:------------------:|:---------------:|:---------------------:|:-------------:|:-----------------------:|:----------------------:|
| **MMLU** | English | 76.2 | 77.8 | 80.3 | 71.1 | 78.4 | 77.8 |
| **BBH** | English | 65.9 | 78.4 | 80.1 | 71.7 | 81.3 | 79.7 |
| **C-Eval** | Chinese | 82.2 | 60.0 | 67.9 | 65.2 | 80.9 | 78.0 |
| **CMMLU** | Chinese | 82.9 | 61.0 | 70.7 | 67.8 | 82.4 | 81.6 |
| **HumanEval** | Code | 68.9 | 75.0 | 76.2 | 73.8 | 76.8 | 81.1 |
| **MBPP** | Code | 52.2 | 64.4 | 69.8 | 61.4 | 70.4 | 72.0 |
| **LiveCodeBench (0901-0401)** | Code | 18.8 | 25.0 | 30.5 | 18.3 | 28.7 | 32.5 |
| **GSM8K** | Math | 81.9 | 87.9 | 93.2 | 84.1 | 90.8 | 92.2 |
| **Math** | Math | 40.6 | 49.8 | 48.5 | 32.6 | 52.7 | 53.9 |
</div>
#### English Open Ended Generation Evaluation
We evaluate our model on AlpacaEval 2.0 and MTBench, showing the competitive performance of DeepSeek-V2-Chat-RL on English conversation generation.
<p align="center">
<img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/mtbench.png?raw=true" />
</p>
#### Chinese Open Ended Generation Evaluation
**Alignbench** (https://arxiv.org/abs/2311.18743)
<div align="center">
| **模型** | **开源/闭源** | **总分** | **中文推理** | **中文语言** |
| :---: | :---: | :---: | :---: | :---: |
| gpt-4-1106-preview | 闭源 | 8.01 | 7.73 | 8.29 |
| DeepSeek-V2 Chat (RL) | 开源 | 7.91 | 7.45 | 8.35 |
| erniebot-4.0-202404 (文心一言) | 闭源 | 7.89 | 7.61 | 8.17 |
| DeepSeek-V2 Chat (SFT) | 开源 | 7.74 | 7.30 | 8.17 |
| gpt-4-0613 | 闭源 | 7.53 | 7.47 | 7.59 |
| erniebot-4.0-202312 (文心一言) | 闭源 | 7.36 | 6.84 | 7.88 |
| moonshot-v1-32k-202404 (月之暗面) | 闭源 | 7.22 | 6.42 | 8.02 |
| Qwen1.5-72B-Chat (通义千问) | 开源 | 7.19 | 6.45 | 7.93 |
| DeepSeek-67B-Chat | 开源 | 6.43 | 5.75 | 7.11 |
| Yi-34B-Chat (零一万物) | 开源 | 6.12 | 4.86 | 7.38 |
| gpt-3.5-turbo-0613 | 闭源 | 6.08 | 5.35 | 6.71 |
</div>
#### Coding Benchmarks
We evaluate our model on LiveCodeBench (0901-0401), a benchmark designed for live coding challenges. As illustrated, DeepSeek-V2 demonstrates considerable proficiency in LiveCodeBench, achieving a Pass@1 score that surpasses several other sophisticated models. This performance highlights the model's effectiveness in tackling live coding tasks.
<p align="center">
<img width="50%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/code_benchmarks.png?raw=true">
</p>
## 4. Model Architecture
DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference:
- For attention, we design MLA (Multi-head Latent Attention), which utilizes low-rank key-value union compression to eliminate the bottleneck of inference-time key-value cache, thus supporting efficient inference.
- For Feed-Forward Networks (FFNs), we adopt DeepSeekMoE architecture, a high-performance MoE architecture that enables training stronger models at lower costs.
<p align="center">
<img width="90%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/architecture.png?raw=true" />
</p>
## 5. Chat Website
You can chat with the DeepSeek-V2 on DeepSeek's official website: [chat.deepseek.com](https://chat.deepseek.com/sign_in)
## 6. API Platform
We also provide OpenAI-Compatible API at DeepSeek Platform: [platform.deepseek.com](https://platform.deepseek.com/). Sign up for over millions of free tokens. And you can also pay-as-you-go at an unbeatable price.
<p align="center">
<img width="40%" src="https://github.com/deepseek-ai/DeepSeek-V2/blob/main/figures/model_price.png?raw=true">
</p>
## 7. How to run locally
**To utilize DeepSeek-V2 in BF16 format for inference, 80GB*8 GPUs are required.**
### Inference with Huggingface's Transformers
You can directly employ [Huggingface's Transformers](https://github.com/huggingface/transformers) for model inference.
#### Text Completion
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "deepseek-ai/DeepSeek-V2"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# `max_memory` should be set based on your devices
max_memory = {i: "75GB" for i in range(8)}
# `device_map` cannot be set to `auto`
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
inputs = tokenizer(text, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(result)
```
#### Chat Completion
```python
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
model_name = "deepseek-ai/DeepSeek-V2-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
# `max_memory` should be set based on your devices
max_memory = {i: "75GB" for i in range(8)}
# `device_map` cannot be set to `auto`
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, device_map="sequential", torch_dtype=torch.bfloat16, max_memory=max_memory, attn_implementation="eager")
model.generation_config = GenerationConfig.from_pretrained(model_name)
model.generation_config.pad_token_id = model.generation_config.eos_token_id
messages = [
{"role": "user", "content": "Write a piece of quicksort code in C++"}
]
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
print(result)
```
The complete chat template can be found within `tokenizer_config.json` located in the huggingface model repository.
An example of chat template is as belows:
```bash
<|begin▁of▁sentence|>User: {user_message_1}
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
Assistant:
```
You can also add an optional system message:
```bash
<|begin▁of▁sentence|>{system_message}
User: {user_message_1}
Assistant: {assistant_message_1}<|end▁of▁sentence|>User: {user_message_2}
Assistant:
```
### Inference with vLLM (recommended)
To utilize [vLLM](https://github.com/vllm-project/vllm) for model inference, please merge this Pull Request into your vLLM codebase: https://github.com/vllm-project/vllm/pull/4650.
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
max_model_len, tp_size = 8192, 8
model_name = "deepseek-ai/DeepSeek-V2-Chat"
tokenizer = AutoTokenizer.from_pretrained(model_name)
llm = LLM(model=model_name, tensor_parallel_size=tp_size, max_model_len=max_model_len, trust_remote_code=True, enforce_eager=True)
sampling_params = SamplingParams(temperature=0.3, max_tokens=256, stop_token_ids=[tokenizer.eos_token_id])
messages_list = [
[{"role": "user", "content": "Who are you?"}],
[{"role": "user", "content": "Translate the following content into Chinese directly: DeepSeek-V2 adopts innovative architectures to guarantee economical training and efficient inference."}],
[{"role": "user", "content": "Write a piece of quicksort code in C++."}],
]
prompt_token_ids = [tokenizer.apply_chat_template(messages, add_generation_prompt=True) for messages in messages_list]
outputs = llm.generate(prompt_token_ids=prompt_token_ids, sampling_params=sampling_params)
generated_text = [output.outputs[0].text for output in outputs]
print(generated_text)
```
## 8. License
This code repository is licensed under [the MIT License](LICENSE-CODE). The use of DeepSeek-V2 Base/Chat models is subject to [the Model License](LICENSE-MODEL). DeepSeek-V2 series (including Base and Chat) supports commercial use.
## 9. Citation
```
@misc{deepseekv2,
title={DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model},
author={DeepSeek-AI},
year={2024},
eprint={2405.04434},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## 10. Contact
If you have any questions, please raise an issue or contact us at [service@deepseek.com](service@deepseek.com).
|