File size: 17,556 Bytes
dd31960
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
import math
from dataclasses import dataclass
from typing import Tuple, Optional, Literal

import torch
from torch import nn
import torch.nn.functional as F
import torch.distributed as dist

from kernel import act_quant, weight_dequant, fp8_gemm


world_size = 1
rank = 0
block_size = 128
gemm_impl: Literal["bf16", "fp8"] = "bf16"
attn_impl: Literal["naive", "absorb"] = "absorb"

@dataclass
class ModelArgs:
    max_batch_size: int = 8
    max_seq_len: int = 4096 * 4
    dtype: Literal["bf16", "fp8"] = "bf16"
    vocab_size: int = 102400
    dim: int = 2048
    inter_dim: int = 10944
    moe_inter_dim: int = 1408
    n_layers: int = 27
    n_dense_layers: int = 1
    n_heads: int = 16
    # moe
    n_routed_experts: int = 64
    n_shared_experts: int = 2
    n_activated_experts: int = 6
    n_expert_groups: int = 1
    n_limited_groups: int = 1
    score_func: Literal["softmax", "sigmoid"] = "softmax"
    route_scale: float = 1.
    # mla
    q_lora_rank: int = 0
    kv_lora_rank: int = 512
    qk_nope_head_dim: int = 128
    qk_rope_head_dim: int = 64
    v_head_dim: int = 128
    # yarn
    original_seq_len: int = 4096
    rope_theta: float = 10000.0
    rope_factor: float = 40
    beta_fast: int = 32
    beta_slow: int = 1
    mscale: float = 1.


class ParallelEmbedding(nn.Module):
    def __init__(self, vocab_size: int, dim: int):
        super().__init__()
        self.vocab_size = vocab_size
        self.dim = dim
        assert vocab_size % world_size == 0
        self.part_vocab_size = (vocab_size // world_size)
        self.vocab_start_idx = rank * self.part_vocab_size
        self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size
        self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if world_size > 1:
            mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
            x = x - self.vocab_start_idx
            x[mask] = 0
        y = F.embedding(x, self.weight)
        if world_size > 1:
            y[mask] = 0
            dist.all_reduce(y)
        return y


def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None) -> torch.Tensor:
    if weight.element_size() > 1:
        return F.linear(x, weight, bias)
    elif gemm_impl == "bf16":
        weight = weight_dequant(weight, weight.scale)
        return F.linear(x, weight, bias)
    else:
        x, scale = act_quant(x, block_size)
        y = fp8_gemm(x, scale, weight, weight.scale)
        if bias is not None:
            y += bias
        return y


class Linear(nn.Module):
    dtype = torch.bfloat16

    def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
        super().__init__()
        self.in_features = in_features
        self.out_features = out_features
        self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype))
        if self.weight.element_size() == 1:
            scale_out_features = (out_features + block_size - 1) // block_size
            scale_in_features = (in_features + block_size - 1) // block_size
            self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32))
        else:
            self.register_parameter("scale", None)
        if bias:
            self.bias = nn.Parameter(torch.empty(self.part_out_features))
        else:
            self.register_parameter("bias", None)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return linear(x, self.weight, self.bias)


class ColumnParallelLinear(Linear):
    def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
        assert out_features % world_size == 0
        self.part_out_features = out_features // world_size
        super().__init__(in_features, self.part_out_features, bias, dtype)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        y = linear(x, self.weight, self.bias)
        return y


class RowParallelLinear(Linear):
    def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
        assert in_features % world_size == 0
        self.part_in_features = in_features // world_size
        super().__init__(self.part_in_features, out_features, bias, dtype)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        y = linear(x, self.weight)
        if world_size > 1:
            dist.all_reduce(y)
        if self.bias is not None:
            y += self.bias
        return y


class RMSNorm(nn.Module):
    def __init__(self, dim: int, eps: float = 1e-6):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x: torch.Tensor):
        x = x.float()
        y = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
        return y.type_as(self.weight) * self.weight


def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
    dim = args.qk_rope_head_dim
    seqlen = args.max_seq_len
    beta_fast = args.beta_fast
    beta_slow = args.beta_slow
    base = args.rope_theta
    factor = args.rope_factor

    def find_correction_dim(num_rotations, dim, base, max_seq_len):
        return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))

    def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
        low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
        high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
        return max(low, 0), min(high, dim-1)

    def linear_ramp_factor(min, max, dim):
        if min == max:
            max += 0.001
        linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
        ramp_func = torch.clamp(linear_func, 0, 1)
        return ramp_func

    freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
    if seqlen > args.original_seq_len:
        low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len)
        smooth = 1 - linear_ramp_factor(low, high, dim // 2)
        freqs = freqs / factor * (1 - smooth) + freqs * smooth

    t = torch.arange(seqlen)
    freqs = torch.outer(t, freqs)
    freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
    return freqs_cis


def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
    dtype = x.dtype
    x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
    freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
    y = torch.view_as_real(x * freqs_cis).flatten(3)
    return y.to(dtype)


class MLA(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__()
        self.dim = args.dim
        self.n_heads = args.n_heads
        self.n_local_heads = args.n_heads // world_size
        self.q_lora_rank = args.q_lora_rank
        self.kv_lora_rank = args.kv_lora_rank
        self.qk_nope_head_dim = args.qk_nope_head_dim
        self.qk_rope_head_dim = args.qk_rope_head_dim
        self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim
        self.v_head_dim = args.v_head_dim

        if self.q_lora_rank == 0:
            self.wq = ColumnParallelLinear(self.dim, self.n_heads * self.qk_head_dim)
        else:
            self.wq_a = Linear(self.dim, self.q_lora_rank)
            self.q_norm = RMSNorm(self.q_lora_rank)
            self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
        self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
        self.kv_norm = RMSNorm(self.kv_lora_rank)
        self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
        self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim)
        self.softmax_scale = self.qk_head_dim ** -0.5
        if args.max_seq_len > args.original_seq_len:
            mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0
            self.softmax_scale = self.softmax_scale * mscale * mscale

        if attn_impl == "naive":
            self.register_buffer("k_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.qk_head_dim), persistent=False)
            self.register_buffer("v_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.n_local_heads, self.v_head_dim), persistent=False)
        else:
            self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False)
            self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)

    def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
        bsz, seqlen, _ = x.size()
        end_pos = start_pos + seqlen
        if self.q_lora_rank == 0:
            q = self.wq(x)
        else:
            q = self.wq_b(self.q_norm(self.wq_a(x)))
        q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
        q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
        q_pe = apply_rotary_emb(q_pe, freqs_cis)
        kv = self.wkv_a(x)
        kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
        k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis)
        if attn_impl == "naive":
            q = torch.cat([q_nope, q_pe], dim=-1)
            kv = self.wkv_b(self.kv_norm(kv))
            kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim)
            k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
            k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1)
            self.k_cache[:bsz, start_pos:end_pos] = k
            self.v_cache[:bsz, start_pos:end_pos] = v
            scores = torch.einsum("bshd,bthd->bsht", q, self.k_cache[:bsz, :end_pos]) * self.softmax_scale
        else:
            wkv_b = self.wkv_b.weight if self.wkv_b.scale is None else weight_dequant(self.wkv_b.weight, self.wkv_b.scale, block_size) 
            wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
            q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
            self.kv_cache[:bsz, start_pos:end_pos] = self.kv_norm(kv)
            self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2)
            scores = (torch.einsum("bshc,btc->bsht", q_nope, self.kv_cache[:bsz, :end_pos]) +
                      torch.einsum("bshr,btr->bsht", q_pe, self.pe_cache[:bsz, :end_pos])) * self.softmax_scale
        if mask is not None:
            scores += mask.unsqueeze(1)
        scores = scores.softmax(dim=-1, dtype=torch.float32).type_as(x)
        if attn_impl == "naive":
            x = torch.einsum("bsht,bthd->bshd", scores, self.v_cache[:bsz, :end_pos])
        else:
            x = torch.einsum("bsht,btc->bshc", scores, self.kv_cache[:bsz, :end_pos])
            x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
        x = self.wo(x.flatten(2))
        return x


class MLP(nn.Module):
    def __init__(self, dim: int, inter_dim: int):
        super().__init__()
        self.w1 = ColumnParallelLinear(dim, inter_dim)
        self.w2 = RowParallelLinear(inter_dim, dim)
        self.w3 = ColumnParallelLinear(dim, inter_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.w2(F.silu(self.w1(x)) * self.w3(x))


class Gate(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__()
        self.dim = args.dim
        self.topk = args.n_activated_experts
        self.n_groups = args.n_expert_groups
        self.topk_groups = args.n_limited_groups
        self.score_func = args.score_func
        self.route_scale = args.route_scale
        self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim))
        self.bias = nn.Parameter(torch.empty(args.n_routed_experts)) if self.dim == 7168 else None

    def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        scores = linear(x, self.weight)
        if self.score_func == "softmax":
            scores = scores.softmax(dim=-1, dtype=torch.float32)
        else:
            scores = scores.sigmoid()
        original_scores = scores
        if self.bias is not None:
            scores = scores + self.bias
        if self.n_groups > 1:
            scores = scores.view(x.size(0), self.n_groups, -1)
            if self.bias is None:
                group_scores = scores.amax(dim=-1)
            else:
                group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1)
            indices = group_scores.topk(self.topk_groups, dim=-1)[1]
            mask = torch.zeros_like(scores[..., 0]).scatter_(1, indices, True)
            scores = (scores * mask.unsqueeze(-1)).flatten(1)
        indices = torch.topk(scores, self.topk, dim=-1)[1]
        weights = original_scores.gather(1, indices)
        if self.score_func == "sigmoid":
            weights /= weights.sum(dim=-1, keepdim=True)
        weights *= self.route_scale
        return weights.type_as(x), indices


class Expert(nn.Module):
    def __init__(self, dim: int, inter_dim: int):
        super().__init__()
        self.w1 = Linear(dim, inter_dim)
        self.w2 = Linear(inter_dim, dim)
        self.w3 = Linear(dim, inter_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.w2(F.silu(self.w1(x)) * self.w3(x))


class MoE(nn.Module):
    def __init__(self, args: ModelArgs):
        super().__init__()
        self.dim = args.dim
        assert args.n_routed_experts % world_size == 0
        self.n_routed_experts = args.n_routed_experts
        self.n_local_experts = args.n_routed_experts // world_size
        self.n_activated_experts = args.n_activated_experts
        self.experts_start_idx = rank * self.n_local_experts
        self.experts_end_idx = self.experts_start_idx + self.n_local_experts
        self.gate = Gate(args)
        self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None
                                      for i in range(self.n_routed_experts)])
        self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        shape = x.size()
        x = x.view(-1, self.dim)
        weights, indices = self.gate(x)
        y = torch.zeros_like(x)
        counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist()
        for i in range(self.experts_start_idx, self.experts_end_idx):
            if counts[i] == 0:
                continue
            expert = self.experts[i]
            idx, top = torch.where(indices == i)
            y[idx] += expert(x[idx]) * weights[idx, top, None]
        z = self.shared_experts(x)
        if world_size > 1:
            dist.all_reduce(y)
        return (y + z).view(shape)


class Block(nn.Module):
    def __init__(self, layer_id: int, args: ModelArgs):
        super().__init__()
        self.attn = MLA(args)
        self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
        self.attn_norm = RMSNorm(args.dim)
        self.ffn_norm = RMSNorm(args.dim)

    def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
        x = x + self.attn(self.attn_norm(x), start_pos, freqs_cis, mask)
        x = x + self.ffn(self.ffn_norm(x))
        return x


class Transformer(nn.Module):
    def __init__(self, args: ModelArgs):
        global world_size, rank
        world_size = dist.get_world_size() if dist.is_initialized() else 1
        rank = dist.get_rank() if dist.is_initialized() else 0
        Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
        super().__init__()
        self.max_seq_len = args.max_seq_len
        self.embed = ParallelEmbedding(args.vocab_size, args.dim)
        self.layers = torch.nn.ModuleList()
        for layer_id in range(args.n_layers):
            self.layers.append(Block(layer_id, args))
        self.norm = RMSNorm(args.dim)
        self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.get_default_dtype())
        self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)

    @torch.inference_mode()
    def forward(self, tokens: torch.Tensor, start_pos: int = 0):
        seqlen = tokens.size(1)
        h = self.embed(tokens)
        freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen]
        mask = None
        if seqlen > 1:
            mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1)
        for layer in self.layers:
            h = layer(h, start_pos, freqs_cis, mask)
        h = self.norm(h)[:, -1]
        logits = self.head(h)
        if world_size > 1:
            all_logits = [torch.empty_like(logits) for _ in range(world_size)]
            dist.all_gather(all_logits, logits)
            logits = torch.cat(all_logits, dim=-1)
        return logits


if __name__ == "__main__":
    torch.set_default_dtype(torch.bfloat16)
    torch.set_default_device("cuda")
    torch.manual_seed(0)
    args = ModelArgs()
    x = torch.randint(0, args.vocab_size, (2, 128))
    model = Transformer(args)
    print(model(x).size())