DeepSeek-V3 / inference /generate.py
msr2000's picture
Release DeepSeek-V3
dd31960
raw
history blame
5.39 kB
import os
import json
from argparse import ArgumentParser
from typing import List
import torch
import torch.distributed as dist
from transformers import AutoTokenizer
from safetensors.torch import load_model
from model import Transformer, ModelArgs
def sample(logits, temperature: float = 1.0):
logits = logits / max(temperature, 1e-5)
probs = torch.softmax(logits, dim=-1)
return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
@torch.inference_mode()
def generate(
model: Transformer,
prompt_tokens: List[List[int]],
max_new_tokens: int,
eos_id: int,
temperature: float = 1.0
) -> List[List[int]]:
prompt_lens = [len(t) for t in prompt_tokens]
assert max(prompt_lens) <= model.max_seq_len
total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
for i, t in enumerate(prompt_tokens):
tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
prev_pos = 0
finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
prompt_mask = tokens != -1
for cur_pos in range(min(prompt_lens), total_len):
logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
if temperature > 0:
next_token = sample(logits, temperature)
else:
next_token = logits.argmax(dim=-1)
next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
tokens[:, cur_pos] = next_token
finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
prev_pos = cur_pos
if finished.all():
break
completion_tokens = []
for i, toks in enumerate(tokens.tolist()):
toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
if eos_id in toks:
toks = toks[:toks.index(eos_id)]
completion_tokens.append(toks)
return completion_tokens
def main(
ckpt_path: str,
config: str,
input_file: str = "",
interactive: bool = True,
max_new_tokens: int = 100,
temperature: float = 1.0,
) -> None:
world_size = int(os.getenv("WORLD_SIZE", "1"))
rank = int(os.getenv("RANK", "0"))
local_rank = int(os.getenv("LOCAL_RANK", "0"))
if world_size > 1:
dist.init_process_group("nccl")
global print
if rank != 0:
print = lambda *_, **__: None
torch.cuda.set_device(local_rank)
torch.set_default_dtype(torch.bfloat16)
torch.set_num_threads(8)
torch.manual_seed(965)
with open(config) as f:
args = ModelArgs(**json.load(f))
print(args)
with torch.device("cuda"):
model = Transformer(args)
tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0])
load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
if interactive:
messages = []
while True:
if world_size == 1:
prompt = input(">>> ")
elif rank == 0:
prompt = input(">>> ")
objects = [prompt]
dist.broadcast_object_list(objects, 0)
else:
objects = [None]
dist.broadcast_object_list(objects, 0)
prompt = objects[0]
if prompt == "/exit":
break
elif prompt == "/clear":
messages.clear()
continue
messages.append({"role": "user", "content": prompt})
prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
print(completion)
messages.append({"role": "assistant", "content": completion})
else:
with open(input_file) as f:
prompts = [line.strip() for line in f.readlines()]
assert len(prompts) <= args.max_batch_size
prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
for prompt, completion in zip(prompts, completions):
print("Prompt:", prompt)
print("Completion:", completion)
print()
if world_size > 1:
dist.destroy_process_group()
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--ckpt-path", type=str, required=True)
parser.add_argument("--config", type=str, required=True)
parser.add_argument("--input-file", type=str, default="")
parser.add_argument("--interactive", action="store_true")
parser.add_argument("--max-new-tokens", type=int, default=200)
parser.add_argument("--temperature", type=float, default=0.2)
args = parser.parse_args()
assert args.input_file or args.interactive
main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)