import os import json from argparse import ArgumentParser from typing import List import torch import torch.distributed as dist from transformers import AutoTokenizer from safetensors.torch import load_model from model import Transformer, ModelArgs def sample(logits, temperature: float = 1.0): logits = logits / max(temperature, 1e-5) probs = torch.softmax(logits, dim=-1) return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1) @torch.inference_mode() def generate( model: Transformer, prompt_tokens: List[List[int]], max_new_tokens: int, eos_id: int, temperature: float = 1.0 ) -> List[List[int]]: prompt_lens = [len(t) for t in prompt_tokens] assert max(prompt_lens) <= model.max_seq_len total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens)) tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda") for i, t in enumerate(prompt_tokens): tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda") prev_pos = 0 finished = torch.tensor([False] * len(prompt_tokens), device="cuda") prompt_mask = tokens != -1 for cur_pos in range(min(prompt_lens), total_len): logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos) if temperature > 0: next_token = sample(logits, temperature) else: next_token = logits.argmax(dim=-1) next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token) tokens[:, cur_pos] = next_token finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id) prev_pos = cur_pos if finished.all(): break completion_tokens = [] for i, toks in enumerate(tokens.tolist()): toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens] if eos_id in toks: toks = toks[:toks.index(eos_id)] completion_tokens.append(toks) return completion_tokens def main( ckpt_path: str, config: str, input_file: str = "", interactive: bool = True, max_new_tokens: int = 100, temperature: float = 1.0, ) -> None: world_size = int(os.getenv("WORLD_SIZE", "1")) rank = int(os.getenv("RANK", "0")) local_rank = int(os.getenv("LOCAL_RANK", "0")) if world_size > 1: dist.init_process_group("nccl") global print if rank != 0: print = lambda *_, **__: None torch.cuda.set_device(local_rank) torch.set_default_dtype(torch.bfloat16) torch.set_num_threads(8) torch.manual_seed(965) with open(config) as f: args = ModelArgs(**json.load(f)) print(args) with torch.device("cuda"): model = Transformer(args) tokenizer = AutoTokenizer.from_pretrained(ckpt_path) tokenizer.decode(generate(model, [tokenizer.encode("DeepSeek")], 2, -1, 1.)[0]) load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors")) if interactive: messages = [] while True: if world_size == 1: prompt = input(">>> ") elif rank == 0: prompt = input(">>> ") objects = [prompt] dist.broadcast_object_list(objects, 0) else: objects = [None] dist.broadcast_object_list(objects, 0) prompt = objects[0] if prompt == "/exit": break elif prompt == "/clear": messages.clear() continue messages.append({"role": "user", "content": prompt}) prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True) completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature) completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True) print(completion) messages.append({"role": "assistant", "content": completion}) else: with open(input_file) as f: prompts = [line.strip() for line in f.readlines()] assert len(prompts) <= args.max_batch_size prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts] completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature) completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True) for prompt, completion in zip(prompts, completions): print("Prompt:", prompt) print("Completion:", completion) print() if world_size > 1: dist.destroy_process_group() if __name__ == "__main__": parser = ArgumentParser() parser.add_argument("--ckpt-path", type=str, required=True) parser.add_argument("--config", type=str, required=True) parser.add_argument("--input-file", type=str, default="") parser.add_argument("--interactive", action="store_true") parser.add_argument("--max-new-tokens", type=int, default=200) parser.add_argument("--temperature", type=float, default=0.2) args = parser.parse_args() assert args.input_file or args.interactive main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)