File size: 6,180 Bytes
de73c83 f030715 cf83ca2 f030715 cf83ca2 f030715 cf83ca2 f030715 cf83ca2 f030715 cf83ca2 f030715 cf83ca2 a11a5ad cf83ca2 a11a5ad cf83ca2 a11a5ad cf83ca2 a11a5ad cf83ca2 a11a5ad cf83ca2 de73c83 a02020b de73c83 54d10aa de73c83 54d10aa de73c83 54d10aa de73c83 d88b80d de73c83 d88b80d de73c83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
---
language: en
license: cc-by-4.0
tags:
- deberta
- deberta-v3
- deberta-v3-large
datasets:
- squad_v2
model-index:
- name: deepset/deberta-v3-large-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 88.0876
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmE0MWEwNjBkNTA1MmU0ZDkyYTA1OGEwNzY3NGE4NWU4NGI0NTQzNjRlNjY1NGRmNDU2MjA0NjU1N2JlZmNhYiIsInZlcnNpb24iOjF9.PnBF_vD0HujNBSShGJzsJnjmiBP_qT8xb2E7ORmpKfNspKXEuN_pBk9iV0IHRzdqOSyllcxlCv93XMPblNjWDw
- type: f1
value: 91.1623
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDBkNDUzZmNkNDQwOGRkMmVlZjkxZWVlMzk3NzFmMGIxMTFmMjZlZDcyOWFiMjljNjM5MThlZDM4OWRmNzMwOCIsInZlcnNpb24iOjF9.bacyetziNI2DxO67GWpTyeRPXqF1POkyv00wEHXlyZu71pZngsNpZyrnuj2aJlCqQwHGnF_lT2ysaXKHprQRBg
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 89.2366
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjQ1Yjk3YTdiYTY1NmYxMTI1ZGZlMjRkNTlhZTkyNjRkNjgxYWJiNDk2NzE3NjAyYmY3YmRjNjg4YmEyNDkyYyIsInZlcnNpb24iOjF9.SEWyqX_FPQJOJt2KjOCNgQ2giyVeLj5bmLI5LT_Pfo33tbWPWD09TySYdsthaVTjUGT5DvDzQLASSwBH05FyBw
- type: f1
value: 95.0569
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2QyODQ1NWVlYjQxMjA0YTgyNmQ2NmIxOWY3MDRmZjE3ZWI5Yjc4ZDE4NzA2YjE2YTE1YTBlNzNiYmNmNzI3NCIsInZlcnNpb24iOjF9.NcXEc9xoggV76w1bQKxuJDYbOTxFzdny2k-85_b6AIMtfpYV3rGR1Z5YF6tVY2jyp7mgm5Jd5YSgGI3NvNE-CQ
---
# deberta-v3-large for QA
This is the [deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
## Overview
**Language model:** deberta-v3-large
**Language:** English
**Downstream-task:** Extractive QA
**Training data:** SQuAD 2.0
**Eval data:** SQuAD 2.0
**Code:** See [an example QA pipeline on Haystack](https://haystack.deepset.ai/tutorials/first-qa-system)
**Infrastructure**: 1x NVIDIA A10G
## Hyperparameters
```
batch_size = 2
grad_acc_steps = 32
n_epochs = 6
base_LM_model = "microsoft/deberta-v3-large"
max_seq_len = 512
learning_rate = 7e-6
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
```
## Usage
### In Haystack
Haystack is an NLP framework by deepset. You can use this model in a Haystack pipeline to do question answering at scale (over many documents). To load the model in [Haystack](https://github.com/deepset-ai/haystack/):
```python
reader = FARMReader(model_name_or_path="deepset/deberta-v3-large-squad2")
# or
reader = TransformersReader(model_name_or_path="deepset/deberta-v3-large-squad2",tokenizer="deepset/deberta-v3-large-squad2")
```
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/deberta-v3-large-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Performance
Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://worksheets.codalab.org/rest/bundles/0x6b567e1cf2e041ec80d7098f031c5c9e/contents/blob/).
```
"exact": 87.6105449338836,
"f1": 90.75307008866517,
"total": 11873,
"HasAns_exact": 84.37921727395411,
"HasAns_f1": 90.6732795483674,
"HasAns_total": 5928,
"NoAns_exact": 90.83263246425568,
"NoAns_f1": 90.83263246425568,
"NoAns_total": 5945
```
## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/haystack-logo-colored.svg" class="w-40"/>
</div>
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://huggingface.co/spaces/deepset/README/resolve/main/deepset-logo-colored.svg" class="w-40"/>
</div>
</div>
[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.
Some of our other work:
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)
## Get in touch and join the Haystack community
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://haystack.deepset.ai">Documentation</a></strong>.
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community/join">Discord community open to everyone!</a></strong></p>
[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community/join) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|