--- language: de datasets: - deepset/germandpr license: mit --- ## Overview **Language model:** gbert-base-germandpr-reranking **Language:** German **Training data:** GermanDPR train set (~ 56MB) **Eval data:** GermanDPR test set (~ 6MB) **Infrastructure**: 1x V100 GPU **Published**: June 3rd, 2021 ## Details - We trained a text pair classification model in FARM, which can be used for reranking in document retrieval tasks. To this end, the classifier calculates the similarity of the query and each retrieved top k document (e.g., k=10). The top k documents are then sorted by their similarity scores. The document most similar to the query is the best. ## Hyperparameters ``` batch_size = 16 n_epochs = 2 max_seq_len = 512 tokens for question and passage concatenated learning_rate = 2e-5 lr_schedule = LinearWarmup embeds_dropout_prob = 0.1 ``` ## Performance We use the GermanDPR test dataset as ground truth labels and run two experiments to compare how a BM25 retriever performs with or without reranking with our model. The first experiment runs retrieval on the full German Wikipedia (more than 2 million passages) and second experiment runs retrieval on the GermanDPR dataset only (not more than 5000 passages). Both experiments use 1025 queries. Note that the second experiment is evaluating on a much simpler task because of the smaller dataset size, which explains strong BM25 retrieval performance. ### Full German Wikipedia (more than 2 million passages): BM25 Retriever without Reranking - recall@3: 0.4088 (419 / 1025) - mean_reciprocal_rank@3: 0.3322 BM25 Retriever with Reranking Top 10 Documents - recall@3: 0.5200 (533 / 1025) - mean_reciprocal_rank@3: 0.4800 ### GermanDPR Test Dataset only (not more than 5000 passages): BM25 Retriever without Reranking - recall@3: 0.9102 (933 / 1025) - mean_reciprocal_rank@3: 0.8528 BM25 Retriever with Reranking Top 10 Documents - recall@3: 0.9298 (953 / 1025) - mean_reciprocal_rank@3: 0.8813 ## Usage ### In haystack You can load the model in [haystack](https://github.com/deepset-ai/haystack/) for reranking the documents returned by a Retriever: ```python ... retriever = ElasticsearchRetriever(document_store=document_store) ranker = FARMRanker(model_name_or_path="deepset/gbert-base-germandpr-reranking") ... p = Pipeline() p.add_node(component=retriever, name="ESRetriever", inputs=["Query"]) p.add_node(component=ranker, name="Ranker", inputs=["ESRetriever"]) ) ``` ## About us
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/). Some of our other work: - [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2) - [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1) - [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio) ## Get in touch and join the Haystack community

For more info on Haystack, visit our GitHub repo and Documentation. We also have a Discord community open to everyone!

[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai) By the way: [we're hiring!](http://www.deepset.ai/jobs)