File size: 5,992 Bytes
822f98c
f80ccaa
822f98c
 
 
765597d
 
 
13d15d6
 
 
 
 
 
 
 
 
 
 
 
765597d
13d15d6
765597d
13d15d6
765597d
 
13d15d6
765597d
13d15d6
765597d
4d931e9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
822f98c
 
 
 
65ef621
9a25070
 
930271a
a152f4d
822f98c
 
18c01a6
822f98c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a3ac5
 
 
 
 
822f98c
e3a3ac5
 
 
 
 
 
 
 
 
 
 
 
 
 
822f98c
 
 
e3a3ac5
 
 
 
 
 
 
822f98c
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
---
language: en
license: mit
tags:
- exbert
datasets:
- squad_v2
thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg
model-index:
- name: deepset/roberta-base-squad2-distilled
  results:
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_v2
      type: squad_v2
      config: squad_v2
      split: validation
    metrics:
    - type: exact_match
      value: 80.8593
      name: Exact Match
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMzVjNzkxNmNiNDkzNzdiYjJjZGM3ZTViMGJhOGM2ZjFmYjg1MjYxMDM2YzM5NWMwNDIyYzNlN2QwNGYyNDMzZSIsInZlcnNpb24iOjF9.Rgww8tf8D7nF2dh2U_DMrFzmp87k8s7RFibrDXSvQyA66PGWXwjlsd1552lzjHnNV5hvHUM1-h3PTuY_5p64BA
    - type: f1
      value: 84.0104
      name: F1
      verified: true
      verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNTAyZDViNWYzNjA4OWQ5MzgyYmQ2ZDlhNWRhMTIzYTYxYzViMmI4NWE4ZGU5MzVhZTAwNTRlZmRlNWUwMjI0ZSIsInZlcnNpb24iOjF9.Er21BNgJ3jJXLuZtpubTYq9wCwO1i_VLQFwS5ET0e4eAYVVj0aOA40I5FvP5pZac3LjkCnVacxzsFWGCYVmnDA
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad
      type: squad
      config: plain_text
      split: validation
    metrics:
    - type: exact_match
      value: 86.225
      name: Exact Match
    - type: f1
      value: 92.483
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: adversarial_qa
      type: adversarial_qa
      config: adversarialQA
      split: validation
    metrics:
    - type: exact_match
      value: 29.900
      name: Exact Match
    - type: f1
      value: 41.183
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squad_adversarial
      type: squad_adversarial
      config: AddOneSent
      split: validation
    metrics:
    - type: exact_match
      value: 79.071
      name: Exact Match
    - type: f1
      value: 84.472
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts amazon
      type: squadshifts
      config: amazon
      split: test
    metrics:
    - type: exact_match
      value: 70.733
      name: Exact Match
    - type: f1
      value: 83.958
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts new_wiki
      type: squadshifts
      config: new_wiki
      split: test
    metrics:
    - type: exact_match
      value: 82.011
      name: Exact Match
    - type: f1
      value: 91.092
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts nyt
      type: squadshifts
      config: nyt
      split: test
    metrics:
    - type: exact_match
      value: 84.203
      name: Exact Match
    - type: f1
      value: 91.521
      name: F1
  - task:
      type: question-answering
      name: Question Answering
    dataset:
      name: squadshifts reddit
      type: squadshifts
      config: reddit
      split: test
    metrics:
    - type: exact_match
      value: 72.029
      name: Exact Match
    - type: f1
      value: 83.454
      name: F1
---

## Overview
**Language model:** deepset/roberta-base-squad2-distilled   
**Language:** English  
**Training data:** SQuAD 2.0 training set
**Eval data:** SQuAD 2.0 dev set
**Infrastructure**: 4x V100 GPU  
**Published**: Dec 8th, 2021

## Details
- haystack's distillation feature was used for training. deepset/roberta-large-squad2 was used as the teacher model.

## Hyperparameters
```
batch_size = 80
n_epochs = 4
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 1.5
distillation_loss_weight = 0.75
```
## Performance
```
"exact": 79.8366040596311
"f1": 83.916407079888
```

## Authors
**Timo M枚ller:** timo.moeller@deepset.ai    
**Julian Risch:** julian.risch@deepset.ai    
**Malte Pietsch:** malte.pietsch@deepset.ai    
**Michel Bartels:** michel.bartels@deepset.ai    

## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
    <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
     </div>
     <div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
         <img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
     </div>
</div>

[deepset](http://deepset.ai/) is the company behind the open-source NLP framework [Haystack](https://haystack.deepset.ai/) which is designed to help you build production ready NLP systems that use: Question answering, summarization, ranking etc.


Some of our other work: 
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")]([https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT (aka "bert-base-german-cased")](https://deepset.ai/german-bert)
- [GermanQuAD and GermanDPR datasets and models (aka "gelectra-base-germanquad", "gbert-base-germandpr")](https://deepset.ai/germanquad)

## Get in touch and join the Haystack community

<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>. 

We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>

[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://deepset.ai)

By the way: [we're hiring!](http://www.deepset.ai/jobs)