julianrisch
commited on
update code example to Haystack 2.x, new tutorial link, website link, twitter link, Haystack description (#27)
Browse files- update code example to Haystack 2.x, new tutorial link, website link, twitter link, Haystack description (e451d6d880fb9ce07fda3f8126c45be5c72a5241)
README.md
CHANGED
@@ -142,9 +142,10 @@ base_model:
|
|
142 |
- FacebookAI/roberta-base
|
143 |
---
|
144 |
|
145 |
-
# roberta-base for QA
|
146 |
|
147 |
-
This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Question Answering.
|
|
|
148 |
|
149 |
|
150 |
## Overview
|
@@ -153,7 +154,7 @@ This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tune
|
|
153 |
**Downstream-task:** Extractive QA
|
154 |
**Training data:** SQuAD 2.0
|
155 |
**Eval data:** SQuAD 2.0
|
156 |
-
**Code:** See [an example QA pipeline
|
157 |
**Infrastructure**: 4x Tesla v100
|
158 |
|
159 |
## Hyperparameters
|
@@ -170,19 +171,30 @@ doc_stride=128
|
|
170 |
max_query_length=64
|
171 |
```
|
172 |
|
173 |
-
## Using a distilled model instead
|
174 |
-
Please note that we have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). The distilled model has a comparable prediction quality and runs at twice the speed of the base model.
|
175 |
-
|
176 |
## Usage
|
177 |
|
178 |
### In Haystack
|
179 |
-
Haystack is an
|
|
|
180 |
```python
|
181 |
-
|
182 |
-
|
183 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
```
|
185 |
-
For a complete example
|
186 |
|
187 |
### In Transformers
|
188 |
```python
|
@@ -236,8 +248,7 @@ Evaluated on the SQuAD 2.0 dev set with the [official eval script](https://works
|
|
236 |
</div>
|
237 |
</div>
|
238 |
|
239 |
-
[deepset](http://deepset.ai/) is the company behind the open-source
|
240 |
-
|
241 |
|
242 |
Some of our other work:
|
243 |
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
|
@@ -250,6 +261,6 @@ Some of our other work:
|
|
250 |
|
251 |
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
252 |
|
253 |
-
[Twitter](https://twitter.com/
|
254 |
|
255 |
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|
|
|
142 |
- FacebookAI/roberta-base
|
143 |
---
|
144 |
|
145 |
+
# roberta-base for Extractive QA
|
146 |
|
147 |
+
This is the [roberta-base](https://huggingface.co/roberta-base) model, fine-tuned using the [SQuAD2.0](https://huggingface.co/datasets/squad_v2) dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
|
148 |
+
We have also released a distilled version of this model called [deepset/tinyroberta-squad2](https://huggingface.co/deepset/tinyroberta-squad2). It has a comparable prediction quality and runs at twice the speed of [deepset/roberta-base-squad2](https://huggingface.co/deepset/roberta-base-squad2).
|
149 |
|
150 |
|
151 |
## Overview
|
|
|
154 |
**Downstream-task:** Extractive QA
|
155 |
**Training data:** SQuAD 2.0
|
156 |
**Eval data:** SQuAD 2.0
|
157 |
+
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
|
158 |
**Infrastructure**: 4x Tesla v100
|
159 |
|
160 |
## Hyperparameters
|
|
|
171 |
max_query_length=64
|
172 |
```
|
173 |
|
|
|
|
|
|
|
174 |
## Usage
|
175 |
|
176 |
### In Haystack
|
177 |
+
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
|
178 |
+
To load and run the model with [Haystack version 2.x](https://github.com/deepset-ai/haystack/):
|
179 |
```python
|
180 |
+
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
|
181 |
+
|
182 |
+
from haystack import Document
|
183 |
+
from haystack.components.readers import ExtractiveReader
|
184 |
+
|
185 |
+
docs = [
|
186 |
+
Document(content="Python is a popular programming language"),
|
187 |
+
Document(content="python ist eine beliebte Programmiersprache"),
|
188 |
+
]
|
189 |
+
|
190 |
+
reader = ExtractiveReader(model="deepset/roberta-base-squad2")
|
191 |
+
reader.warm_up()
|
192 |
+
|
193 |
+
question = "What is a popular programming language?"
|
194 |
+
result = reader.run(query=question, documents=docs)
|
195 |
+
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
|
196 |
```
|
197 |
+
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
|
198 |
|
199 |
### In Transformers
|
200 |
```python
|
|
|
248 |
</div>
|
249 |
</div>
|
250 |
|
251 |
+
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
|
|
|
252 |
|
253 |
Some of our other work:
|
254 |
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
|
|
|
261 |
|
262 |
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
|
263 |
|
264 |
+
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/)
|
265 |
|
266 |
By the way: [we're hiring!](http://www.deepset.ai/jobs)
|