File size: 6,404 Bytes
8084f28 2e1428b d2f54c1 2e1428b d2f54c1 2e1428b d2f54c1 2e1428b d2f54c1 2e1428b d2f54c1 2e1428b 8084f28 6a7bbfd 8084f28 d31acc0 6a7bbfd 8084f28 6a7bbfd 8084f28 6c62aa0 8084f28 6a7bbfd 2483bb0 6a7bbfd 2483bb0 6a7bbfd 8084f28 6a7bbfd 8084f28 6a7bbfd 8084f28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
---
language: en
license: mit
tags:
- exbert
datasets:
- squad_v2
thumbnail: https://thumb.tildacdn.com/tild3433-3637-4830-a533-353833613061/-/resize/720x/-/format/webp/germanquad.jpg
model-index:
- name: deepset/tinybert-6l-768d-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 73.8248
name: Exact Match
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFmZmFiN2E5ODZkOTkyMjQ1NTUzMmQwMjc0M2RlYzVlNmM4YTFlNzA4YzIwY2JkY2EyNDg2ZTY3OTdjZTVlZiIsInZlcnNpb24iOjF9.ZZ6c2OI3lzeNhuSWTh28j00zk-sPrqkTvdVBZv2wJc1D4YnR-xOj72haybT6MV_xeYqTg3-x9L8PsWSS20NaDw
- type: f1
value: 77.1684
name: F1
verified: true
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNzAxMDk1YzI5ZjA2N2ZmMzAxNjgxYzJiNzAzYmI1ZWU5ZDRmYWY3OWJmMjlmNDcyMGE0YWY5NjNhZTk4YWY5ZSIsInZlcnNpb24iOjF9.rF3raNGUSYv5D2xzWLZztD99vwDKvWb22LG32RomrDGP6XKTbCVqZzAw5UFw93jKb0VoLApbQQ-AOGxLj3U_Cg
---
# tinybert for Extractive QA
## Overview
**Language model:** deepset/tinybert-6L-768D-squad2
**Language:** English
**Training data:** SQuAD 2.0 training set x 20 augmented + SQuAD 2.0 training set without augmentation
**Eval data:** SQuAD 2.0 dev set
**Code:** See [an example extractive QA pipeline built with Haystack](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline)
**Infrastructure**: 1x V100 GPU
**Published**: Dec 8th, 2021
## Details
- Haystack's intermediate layer and prediction layer distillation features were used for training (based on [TinyBERT](https://arxiv.org/pdf/1909.10351.pdf)). deepset/bert-base-uncased-squad2 was used as the teacher model and huawei-noah/TinyBERT_General_6L_768D was used as the student model.
## Hyperparameters
### Intermediate layer distillation
```
batch_size = 26
n_epochs = 5
max_seq_len = 384
learning_rate = 5e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 1
```
### Prediction layer distillation
```
batch_size = 26
n_epochs = 5
max_seq_len = 384
learning_rate = 3e-5
lr_schedule = LinearWarmup
embeds_dropout_prob = 0.1
temperature = 1
distillation_loss_weight = 1.0
```
## Usage
### In Haystack
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents.
To load and run the model with [Haystack](https://github.com/deepset-ai/haystack/):
```python
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
from haystack import Document
from haystack.components.readers import ExtractiveReader
docs = [
Document(content="Python is a popular programming language"),
Document(content="python ist eine beliebte Programmiersprache"),
]
reader = ExtractiveReader(model="deepset/tinybert-6l-768d-squad2")
reader.warm_up()
question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
```
For a complete example with an extractive question answering pipeline that scales over many documents, check out the [corresponding Haystack tutorial](https://haystack.deepset.ai/tutorials/34_extractive_qa_pipeline).
### In Transformers
```python
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/tinybert-6l-768d-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
```
## Performance
```
"exact": 71.87736882001179
"f1": 76.36111895973675
```
## Authors
- Timo M枚ller: `timo.moeller [at] deepset.ai`
- Julian Risch: `julian.risch [at] deepset.ai`
- Malte Pietsch: `malte.pietsch [at] deepset.ai`
- Michel Bartels: `michel.bartels [at] deepset.ai`
## About us
<div class="grid lg:grid-cols-2 gap-x-4 gap-y-3">
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/deepset-logo-colored.png" class="w-40"/>
</div>
<div class="w-full h-40 object-cover mb-2 rounded-lg flex items-center justify-center">
<img alt="" src="https://raw.githubusercontent.com/deepset-ai/.github/main/haystack-logo-colored.png" class="w-40"/>
</div>
</div>
[deepset](http://deepset.ai/) is the company behind the production-ready open-source AI framework [Haystack](https://haystack.deepset.ai/).
Some of our other work:
- [Distilled roberta-base-squad2 (aka "tinyroberta-squad2")](https://huggingface.co/deepset/tinyroberta-squad2)
- [German BERT](https://deepset.ai/german-bert), [GermanQuAD and GermanDPR](https://deepset.ai/germanquad), [German embedding model](https://huggingface.co/mixedbread-ai/deepset-mxbai-embed-de-large-v1)
- [deepset Cloud](https://www.deepset.ai/deepset-cloud-product), [deepset Studio](https://www.deepset.ai/deepset-studio)
## Get in touch and join the Haystack community
<p>For more info on Haystack, visit our <strong><a href="https://github.com/deepset-ai/haystack">GitHub</a></strong> repo and <strong><a href="https://docs.haystack.deepset.ai">Documentation</a></strong>.
We also have a <strong><a class="h-7" href="https://haystack.deepset.ai/community">Discord community open to everyone!</a></strong></p>
[Twitter](https://twitter.com/Haystack_AI) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Discord](https://haystack.deepset.ai/community) | [GitHub Discussions](https://github.com/deepset-ai/haystack/discussions) | [Website](https://haystack.deepset.ai/) | [YouTube](https://www.youtube.com/@deepset_ai)
By the way: [we're hiring!](http://www.deepset.ai/jobs) |