llmz commited on
Commit
6e2a77e
1 Parent(s): 310a9d6

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -9
README.md CHANGED
@@ -61,20 +61,16 @@ Here provides a code snippet with `apply_chat_template` to show you how to load
61
  ```python
62
  from transformers import AutoModelForCausalLM, AutoTokenizer
63
 
64
- model_name = "Qwen/Qwen2.5-3B-Instruct"
65
-
66
- model = AutoModelForCausalLM.from_pretrained(
67
- model_name,
68
- torch_dtype="auto",
69
- device_map="auto"
70
- )
71
  tokenizer = AutoTokenizer.from_pretrained(model_name)
72
 
73
- prompt = "Give me a short introduction to large language model."
74
  messages = [
75
- {"role": "system", "content": "You are Qwen, created by Alibaba Cloud. You are a helpful assistant."},
76
  {"role": "user", "content": prompt}
77
  ]
 
78
  text = tokenizer.apply_chat_template(
79
  messages,
80
  tokenize=False,
@@ -91,6 +87,8 @@ generated_ids = [
91
  ]
92
 
93
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
 
 
94
  ```
95
 
96
 
 
61
  ```python
62
  from transformers import AutoModelForCausalLM, AutoTokenizer
63
 
64
+ model_name = 'deeptoken/Qwen2.5-3B-RuoZhiBa-Instruct'
65
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype='auto', device_map='auto')
 
 
 
 
 
66
  tokenizer = AutoTokenizer.from_pretrained(model_name)
67
 
68
+ prompt = '鸡柳是鸡的哪个部位?'
69
  messages = [
70
+ {"role": "system", "content": "You are a helpful assistant."},
71
  {"role": "user", "content": prompt}
72
  ]
73
+
74
  text = tokenizer.apply_chat_template(
75
  messages,
76
  tokenize=False,
 
87
  ]
88
 
89
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
90
+
91
+ print(response)
92
  ```
93
 
94