File size: 9,344 Bytes
25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 85b3e3a 25f029f 568d9dd 0cc6cfe 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd 25f029f 568d9dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
language:
- ru
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
widget: []
pipeline_tag: sentence-similarity
license: apache-2.0
datasets:
- deepvk/ru-HNP
- deepvk/ru-WANLI
- Shitao/bge-m3-data
- RussianNLP/russian_super_glue
- reciTAL/mlsum
- Milana/russian_keywords
- IlyaGusev/gazeta
- d0rj/gsm8k-ru
- bragovo/dsum_ru
- CarlBrendt/Summ_Dialog_News
---
# USER-bge-m3
**U**niversal **S**entence **E**ncoder for **R**ussian (USER) is a [sentence-transformer](https://www.SBERT.net) model for extracting embeddings exclusively for Russian language.
It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.
This model is initialized from [`TatonkaHF/bge-m3_en_ru`](https://huggingface.co/TatonkaHF/bge-m3_en_ru) which is shrinked version of [`baai/bge-m3`](https://huggingface.co/BAAI/bge-m3) model and trained to work mainly with the Russian language. Its quality on other languages was not evaluated.
## Usage
Using this model becomes easy when you have [`sentence-transformers`](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
input_texts = [
"Когда был спущен на воду первый миноносец «Спокойный»?",
"Есть ли нефть в Удмуртии?",
"Спокойный (эсминец)\nЗачислен в списки ВМФ СССР 19 августа 1952 года.",
"Нефтепоисковые работы в Удмуртии были начаты сразу после Второй мировой войны в 1945 году и продолжаются по сей день. Добыча нефти началась в 1967 году."
]
model = SentenceTransformer("deepvk/USER-bge-m3")
embeddings = model.encode(input_texts, normalize_embeddings=True)
```
However, you can use model directly with [`transformers`](https://huggingface.co/docs/transformers/en/index)
```python
import torch.nn.functional as F
from torch import Tensor, inference_mode
from transformers import AutoTokenizer, AutoModel
input_texts = [
"Когда был спущен на воду первый миноносец «Спокойный»?",
"Есть ли нефть в Удмуртии?",
"Спокойный (эсминец)\nЗачислен в списки ВМФ СССР 19 августа 1952 года.",
"Нефтепоисковые работы в Удмуртии были начаты сразу после Второй мировой войны в 1945 году и продолжаются по сей день. Добыча нефти началась в 1967 году."
]
tokenizer = AutoTokenizer.from_pretrained("deepvk/USER-bge-m3")
model = AutoModel.from_pretrained("deepvk/USER-bge-m3")
model.eval()
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
# [[0.5567, 0.3014],
# [0.1701, 0.7122]]
scores = (sentence_embeddings[:2] @ sentence_embeddings[2:].T)
```
Also, you can use native [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) library for evaluation. Usage is described in [`bge-m3` model card](https://huggingface.co/BAAI/bge-m3).
# Training Details
We follow the [`USER-base`](https://huggingface.co/deepvk/USER-base) model training algorithm, with several changes as we use different backbone.
**Initialization:** [`TatonkaHF/bge-m3_en_ru`](https://huggingface.co/TatonkaHF/bge-m3_en_ru) – shrinked version of [`baai/bge-m3`](https://huggingface.co/BAAI/bge-m3) to support only Russian and English tokens.
**Fine-tuning:** Supervised fine-tuning two different models based on data symmetry and then merging via [`LM-Cocktail`](https://arxiv.org/abs/2311.13534):
1. Since we split the data, we could additionally apply the [AnglE loss](https://arxiv.org/abs/2309.12871) to the symmetric model, which enhances performance on symmetric tasks.
2. Finally, we added the original `bge-m3` model to the two obtained models to prevent catastrophic forgetting, tuning the weights for the merger using `LM-Cocktail` to produce the final model, **USER-bge-m3**.
### Dataset
During model development, we additional collect 2 datasets:
[`deepvk/ru-HNP`](https://huggingface.co/datasets/deepvk/ru-HNP) and
[`deepvk/ru-WANLI`](https://huggingface.co/datasets/deepvk/ru-WANLI).
| Symmetric Dataset | Size | Asymmetric Dataset | Size |
|-------------------|-------|--------------------|------|
| **AllNLI** | 282 644 | [**MIRACL**](https://huggingface.co/datasets/Shitao/bge-m3-data/tree/main) | 10 000 |
| [MedNLI](https://github.com/jgc128/mednli) | 3 699 | [MLDR](https://huggingface.co/datasets/Shitao/bge-m3-data/tree/main) | 1 864 |
| [RCB](https://huggingface.co/datasets/RussianNLP/russian_super_glue) | 392 | [Lenta](https://github.com/yutkin/Lenta.Ru-News-Dataset) | 185 972 |
| [Terra](https://huggingface.co/datasets/RussianNLP/russian_super_glue) | 1 359 | [Mlsum](https://huggingface.co/datasets/reciTAL/mlsum) | 51 112 |
| [Tapaco](https://huggingface.co/datasets/tapaco) | 91 240 | [Mr-TyDi](https://huggingface.co/datasets/Shitao/bge-m3-data/tree/main) | 536 600 |
| [**deepvk/ru-WANLI**](https://huggingface.co/datasets/deepvk/ru-WANLI) | 35 455 | [Panorama](https://huggingface.co/datasets/its5Q/panorama) | 11 024 |
| [**deepvk/ru-HNP**](https://huggingface.co/datasets/deepvk/ru-HNP) | 500 000 | [PravoIsrael](https://huggingface.co/datasets/TarasHu/pravoIsrael) | 26 364 |
| | | [Xlsum](https://huggingface.co/datasets/csebuetnlp/xlsum) | 124 486 |
| | | [Fialka-v1](https://huggingface.co/datasets/0x7o/fialka-v1) | 130 000 |
| | | [RussianKeywords](https://huggingface.co/datasets/Milana/russian_keywords) | 16 461 |
| | | [Gazeta](https://huggingface.co/datasets/IlyaGusev/gazeta) | 121 928 |
| | | [Gsm8k-ru](https://huggingface.co/datasets/d0rj/gsm8k-ru) | 7 470 |
| | | [DSumRu](https://huggingface.co/datasets/bragovo/dsum_ru) | 27 191 |
| | | [SummDialogNews](https://huggingface.co/datasets/CarlBrendt/Summ_Dialog_News) | 75 700 |
**Total positive pairs:** 2,240,961
**Total negative pairs:** 792,644 (negative pairs from AIINLI, MIRACL, deepvk/ru-WANLI, deepvk/ru-HNP)
For all labeled datasets, we only use its training set for fine-tuning.
For datasets Gazeta, Mlsum, Xlsum: pairs (title/text) and (title/summary) are combined and used as asymmetric data.
`AllNLI` is an translated to Russian combination of SNLI, MNLI and ANLI.
## Experiments
We compare our mode with the basic [`baai/bge-m3`](https://huggingface.co/BAAI/bge-m3) on the [`encodechka`](https://github.com/avidale/encodechka) benchmark.
In addition, we evaluate model on the russian subset of [`MTEB`](https://github.com/embeddings-benchmark/mteb) on Classification, Reranking, Multilabel Classification, STS, Retrieval, and PairClassification tasks.
We use validation scripts from the official repositories for each of the tasks.
Results on encodechka:
| Model | Mean S | Mean S+W | STS | PI | NLI | SA | TI | IA | IC | ICX | NE1 | NE2 |
|-------------|--------|----------|------|------|------|------|------|------|------|------|------|------|
| [`baai/bge-m3`](https://huggingface.co/BAAI/bge-m3) | 0.787 | 0.696 | 0.86 | 0.75 | 0.51 | 0.82 | 0.97 | 0.79 | 0.81 | 0.78 | 0.24 | 0.42 |
| `USER-bge-m3` | **0.799** | **0.709** | **0.87** | **0.76** | **0.58** | 0.82 | 0.97 | 0.79 | 0.81 | 0.78 | **0.28** | **0.43** |
Results on MTEB:
| Type | [`baai/bge-m3`](https://huggingface.co/BAAI/bge-m3) | `USER-bge-m3` |
|---------------------------|--------|-------------|
| Average (30 datasets) | 0.689 | **0.706** |
| Classification Average (12 datasets) | 0.571 | **0.594** |
| Reranking Average (2 datasets) | **0.698** | 0.688 |
| MultilabelClassification (2 datasets) | 0.343 | **0.359** |
| STS Average (4 datasets) | 0.735 | **0.753** |
| Retrieval Average (6 datasets) | **0.945** | 0.934 |
| PairClassification Average (4 datasets) | 0.784 | **0.833** |
## Limitations
We did not thoroughly evaluate the model's ability for sparse and multi-vec encoding.
## Citations
```
@misc{deepvk2024user,
title={USER: Universal Sentence Encoder for Russian},
author={Malashenko, Boris and Zemerov, Anton and Spirin, Egor},
url={https://huggingface.co/datasets/deepvk/USER-base},
publisher={Hugging Face}
year={2024},
}
```
|