File size: 9,344 Bytes
25f029f
568d9dd
 
25f029f
 
 
 
 
 
 
568d9dd
 
 
 
 
 
 
 
 
 
 
 
25f029f
 
568d9dd
25f029f
 
568d9dd
 
25f029f
 
568d9dd
25f029f
 
 
 
 
568d9dd
25f029f
568d9dd
 
25f029f
 
 
568d9dd
 
 
 
25f029f
 
 
568d9dd
 
 
 
 
 
 
 
 
25f029f
568d9dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f029f
568d9dd
 
 
 
 
 
 
 
 
 
 
 
 
 
85b3e3a
 
 
 
 
25f029f
 
568d9dd
 
 
 
 
 
 
 
 
0cc6cfe
568d9dd
 
 
 
 
 
 
 
 
25f029f
 
568d9dd
25f029f
 
568d9dd
 
 
25f029f
 
568d9dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25f029f
 
 
 
568d9dd
 
25f029f
 
568d9dd
 
25f029f
 
568d9dd
25f029f
 
568d9dd
25f029f
 
568d9dd
 
 
25f029f
 
568d9dd
 
 
 
 
25f029f
 
568d9dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
language:
- ru
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
widget: []
pipeline_tag: sentence-similarity
license: apache-2.0
datasets:
  - deepvk/ru-HNP
  - deepvk/ru-WANLI
  - Shitao/bge-m3-data
  - RussianNLP/russian_super_glue
  - reciTAL/mlsum
  - Milana/russian_keywords
  - IlyaGusev/gazeta
  - d0rj/gsm8k-ru
  - bragovo/dsum_ru
  - CarlBrendt/Summ_Dialog_News
---

# USER-bge-m3


**U**niversal **S**entence **E**ncoder for **R**ussian (USER) is a [sentence-transformer](https://www.SBERT.net) model for extracting embeddings exclusively for Russian language.
It maps sentences & paragraphs to a 1024 dimensional dense vector space and can be used for tasks like clustering or semantic search.


This model is initialized from [`TatonkaHF/bge-m3_en_ru`](https://huggingface.co/TatonkaHF/bge-m3_en_ru) which is shrinked version of [`baai/bge-m3`](https://huggingface.co/BAAI/bge-m3) model and trained to work mainly with the Russian language. Its quality on other languages was not evaluated.


## Usage


Using this model becomes easy when you have [`sentence-transformers`](https://www.SBERT.net) installed:


```
pip install -U sentence-transformers
```


Then you can use the model like this:


```python
from sentence_transformers import SentenceTransformer


input_texts = [
  "Когда был спущен на воду первый миноносец «Спокойный»?",
  "Есть ли нефть в Удмуртии?",
  "Спокойный (эсминец)\nЗачислен в списки ВМФ СССР 19 августа 1952 года.",
  "Нефтепоисковые работы в Удмуртии были начаты сразу после Второй мировой войны в 1945 году и продолжаются по сей день. Добыча нефти началась в 1967 году."
]


model = SentenceTransformer("deepvk/USER-bge-m3")
embeddings = model.encode(input_texts, normalize_embeddings=True)
```


However, you can use model directly with [`transformers`](https://huggingface.co/docs/transformers/en/index)


```python
import torch.nn.functional as F
from torch import Tensor, inference_mode
from transformers import AutoTokenizer, AutoModel


input_texts = [
  "Когда был спущен на воду первый миноносец «Спокойный»?",
  "Есть ли нефть в Удмуртии?",
  "Спокойный (эсминец)\nЗачислен в списки ВМФ СССР 19 августа 1952 года.",
  "Нефтепоисковые работы в Удмуртии были начаты сразу после Второй мировой войны в 1945 году и продолжаются по сей день. Добыча нефти началась в 1967 году."
]


tokenizer = AutoTokenizer.from_pretrained("deepvk/USER-bge-m3")
model = AutoModel.from_pretrained("deepvk/USER-bge-m3")
model.eval()


encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
  model_output = model(**encoded_input) 
  # Perform pooling. In this case, cls pooling.
  sentence_embeddings = model_output[0][:, 0]

# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)

# [[0.5567, 0.3014],
#  [0.1701, 0.7122]]
scores = (sentence_embeddings[:2] @ sentence_embeddings[2:].T)
```

Also, you can use native [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding) library for evaluation. Usage is described in [`bge-m3` model card](https://huggingface.co/BAAI/bge-m3).


# Training Details


We follow the [`USER-base`](https://huggingface.co/deepvk/USER-base) model training algorithm, with several changes as we use different backbone.


**Initialization:** [`TatonkaHF/bge-m3_en_ru`](https://huggingface.co/TatonkaHF/bge-m3_en_ru) – shrinked version of [`baai/bge-m3`](https://huggingface.co/BAAI/bge-m3) to support only Russian and English tokens.


**Fine-tuning:** Supervised fine-tuning two different models based on data symmetry and then merging via [`LM-Cocktail`](https://arxiv.org/abs/2311.13534):


1. Since we split the data, we could additionally apply the [AnglE loss](https://arxiv.org/abs/2309.12871) to the symmetric model, which enhances performance on symmetric tasks.


2. Finally, we added the original `bge-m3` model to the two obtained models to prevent catastrophic forgetting, tuning the weights for the merger using `LM-Cocktail` to produce the final model, **USER-bge-m3**.


### Dataset


During model development, we additional collect 2 datasets:
[`deepvk/ru-HNP`](https://huggingface.co/datasets/deepvk/ru-HNP) and 
[`deepvk/ru-WANLI`](https://huggingface.co/datasets/deepvk/ru-WANLI).


| Symmetric Dataset | Size  | Asymmetric Dataset | Size |
|-------------------|-------|--------------------|------|
| **AllNLI**        | 282 644 | [**MIRACL**](https://huggingface.co/datasets/Shitao/bge-m3-data/tree/main)         | 10 000 |
| [MedNLI](https://github.com/jgc128/mednli)            | 3 699  | [MLDR](https://huggingface.co/datasets/Shitao/bge-m3-data/tree/main)               | 1 864  |
| [RCB](https://huggingface.co/datasets/RussianNLP/russian_super_glue)               | 392   | [Lenta](https://github.com/yutkin/Lenta.Ru-News-Dataset)              | 185 972 |
| [Terra](https://huggingface.co/datasets/RussianNLP/russian_super_glue)             | 1 359  | [Mlsum](https://huggingface.co/datasets/reciTAL/mlsum)              | 51 112  |
| [Tapaco](https://huggingface.co/datasets/tapaco)            | 91 240 | [Mr-TyDi](https://huggingface.co/datasets/Shitao/bge-m3-data/tree/main)            | 536 600 |
|  [**deepvk/ru-WANLI**](https://huggingface.co/datasets/deepvk/ru-WANLI)         | 35 455 | [Panorama](https://huggingface.co/datasets/its5Q/panorama)          | 11 024  |
|   [**deepvk/ru-HNP**](https://huggingface.co/datasets/deepvk/ru-HNP)       | 500 000 | [PravoIsrael](https://huggingface.co/datasets/TarasHu/pravoIsrael)        | 26 364  |
| |  | [Xlsum](https://huggingface.co/datasets/csebuetnlp/xlsum)           | 124 486 |
|      |  | [Fialka-v1](https://huggingface.co/datasets/0x7o/fialka-v1)          | 130 000 |
|             |  | [RussianKeywords](https://huggingface.co/datasets/Milana/russian_keywords)    | 16 461  |
|        |  | [Gazeta](https://huggingface.co/datasets/IlyaGusev/gazeta)             | 121 928 |
|                   |       | [Gsm8k-ru](https://huggingface.co/datasets/d0rj/gsm8k-ru)           | 7 470   |
|                   |       | [DSumRu](https://huggingface.co/datasets/bragovo/dsum_ru)             | 27 191  |
|                   |       | [SummDialogNews](https://huggingface.co/datasets/CarlBrendt/Summ_Dialog_News)     | 75 700  |




**Total positive pairs:** 2,240,961
**Total negative pairs:** 792,644 (negative pairs from AIINLI, MIRACL, deepvk/ru-WANLI, deepvk/ru-HNP)


For all labeled datasets, we only use its training set for fine-tuning.
For datasets Gazeta, Mlsum, Xlsum: pairs (title/text) and (title/summary) are combined and used as asymmetric data.


`AllNLI` is an translated to Russian combination of SNLI, MNLI and ANLI.


## Experiments


We compare our mode with the basic [`baai/bge-m3`](https://huggingface.co/BAAI/bge-m3) on the [`encodechka`](https://github.com/avidale/encodechka) benchmark.
In addition, we evaluate model on the russian subset of [`MTEB`](https://github.com/embeddings-benchmark/mteb) on Classification, Reranking, Multilabel Classification, STS, Retrieval, and PairClassification tasks.
We use validation scripts from the official repositories for each of the tasks.


Results on encodechka: 
| Model       | Mean S | Mean S+W | STS  | PI   | NLI  | SA   | TI   | IA   | IC   | ICX  | NE1  | NE2  |
|-------------|--------|----------|------|------|------|------|------|------|------|------|------|------|
| [`baai/bge-m3`](https://huggingface.co/BAAI/bge-m3) | 0.787     | 0.696     | 0.86     | 0.75     | 0.51     | 0.82 | 0.97 | 0.79 | 0.81 | 0.78 | 0.24     | 0.42     |
| `USER-bge-m3`                                       | **0.799** | **0.709** | **0.87** | **0.76** | **0.58** | 0.82 | 0.97 | 0.79 | 0.81 | 0.78 | **0.28** | **0.43** |


Results on MTEB:


| Type                      | [`baai/bge-m3`](https://huggingface.co/BAAI/bge-m3) | `USER-bge-m3` |
|---------------------------|--------|-------------|
| Average (30 datasets)           | 0.689  | **0.706**       |
| Classification Average (12 datasets)           | 0.571  | **0.594**      |
| Reranking Average (2 datasets)                | **0.698**  | 0.688       |
| MultilabelClassification (2 datasets)  | 0.343  | **0.359**       |
| STS Average (4 datasets)                      | 0.735  | **0.753**       |
| Retrieval Average (6 datasets)                | **0.945**  | 0.934       |
| PairClassification Average (4 datasets)       | 0.784  | **0.833**       |


## Limitations


We did not thoroughly evaluate the model's ability for sparse and multi-vec encoding.


## Citations


```
@misc{deepvk2024user,
    title={USER: Universal Sentence Encoder for Russian},
    author={Malashenko, Boris and  Zemerov, Anton and Spirin, Egor},
    url={https://huggingface.co/datasets/deepvk/USER-base},
    publisher={Hugging Face}
    year={2024},
}
```