shmpanski commited on
Commit
d752396
·
1 Parent(s): c9841dc

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - ru
5
+ - en
6
+ library_name: transformers
7
+ pipeline_tag: feature-extraction
8
+ ---
9
+
10
+ # BERT-base
11
+
12
+ <!-- Provide a quick summary of what the model is/does. -->
13
+
14
+ Pretrained bidirectional encoder for russian language.
15
+ The model was trained using standard MLM objective on large text corpora including open social data.
16
+ See `Training Details` section for more information.
17
+
18
+ ⚠️ This model contains only the encoder part without any pretrained head.
19
+
20
+
21
+ - **Developed by:** [deepvk](https://vk.com/deepvk)
22
+ - **Model type:** BERT
23
+ - **Languages:** Mostly russian and small fraction of other languages
24
+ - **License:** Apache 2.0
25
+
26
+ ## How to Get Started with the Model
27
+
28
+ ```python
29
+ from transformers import AutoTokenizer, AutoModel
30
+
31
+ tokenizer = AutoTokenizer.from_pretrained("deepvk/bert-base-uncased")
32
+ model = AutoModel.from_pretrained("deepvk/bert-base-uncased")
33
+
34
+ text = "Привет, мир!"
35
+
36
+ inputs = tokenizer(text, return_tensors='pt')
37
+ predictions = model(**inputs)
38
+ ```
39
+
40
+ ## Training Details
41
+
42
+ The model was trained using the NVIDIA source code. See the [pretraining documentation](https://github.com/NVIDIA/DeepLearningExamples/blob/master/PyTorch/LanguageModeling/BERT/README.md#training-process) for details.
43
+
44
+ ### Training Data
45
+
46
+ 250 GB of filtered texts in total.
47
+ A mix of the following data: Wikipedia, Books and Social corpus.
48
+
49
+ ### Architecture details
50
+
51
+
52
+ | Argument | Value |
53
+ |-------------------------|----------------|
54
+ |Encoder layers | 12 |
55
+ |Encoder attention heads | 12 |
56
+ |Encoder embed dim | 768 |
57
+ |Encoder ffn embed dim | 3,072 |
58
+ |Activation function | GeLU |
59
+ |Attention dropout | 0.1 |
60
+ |Dropout | 0.1 |
61
+ |Max positions | 512 |
62
+ |Vocab size | 36000 |
63
+ |Tokenizer type | BertTokenizer |
64
+
65
+ ## Evaluation
66
+
67
+ We evaluated the model on [Russian Super Glue](https://russiansuperglue.com/) dev set.
68
+ The best result in each task is marked in bold.
69
+ All models have the same size except the distilled version of DeBERTa.
70
+
71
+ | Model | RCB | PARus | MuSeRC | TERRa | RUSSE | RWSD | DaNetQA | Score |
72
+ |------------------------------------------------------------------------|-----------|--------|---------|-------|---------|---------|---------|-----------|
73
+ | [vk-deberta-distill](https://huggingface.co/deepvk/deberta-v1-distill) | 0.433 | 0.56 | 0.625 | 0.59 | 0.943 | 0.569 | 0.726 | 0.635 |
74
+ | [vk-roberta-base](https://huggingface.co/deepvk/roberta-base) | 0.46 | 0.56 | 0.679 | 0.769 | 0.960 | 0.569 | 0.658 | 0.665 |
75
+ | [vk-deberta-base](https://huggingface.co/deepvk/deberta-v1-base) | 0.450 |**0.61**|**0.722**| 0.704 | 0.948 | 0.578 |**0.76** |**0.682** |
76
+ | [vk-bert-base](https://huggingface.co/deepvk/bert-base-uncased) | 0.467 | 0.57 | 0.587 | 0.704 | 0.953 |**0.583**| 0.737 | 0.657 |
77
+ | [sber-bert-base](https://huggingface.co/ai-forever/ruBert-base) | **0.491** |**0.61**| 0.663 | 0.769 |**0.962**| 0.574 | 0.678 | 0.678 |