MarshallPF commited on
Commit
4bc6a51
1 Parent(s): 5aaa781

Marshall Lander v0

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 218.23 +/- 84.86
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 223.42 +/- 19.50
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb309e25820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb309e258b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb309e25940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb309e259d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb309e25a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb309e25af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb309e25b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb309e25c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb309e25ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb309e25d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb309e25dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb309e25e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb309e20990>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674212827479639343, "learning_rate": 0.0, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEcAAAAAAAAAAIWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAADPj9zywksQ+xr67vD4Aqr4NP8i8ynjzvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVZRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4q3zb5eEbkCUhpRSlIwBbJRNCQGMAXSUR0CgPYdTP0I1dX2UKGgGaAloD0MI2nHD76Y7cECUhpRSlGgVTSIBaBZHQKA/L5ooNNJ1fZQoaAZoCWgPQwh4DfrSGwBxQJSGlFKUaBVNHQFoFkdAoEASVlf7anV9lChoBmgJaA9DCOFfBI2ZjXBAlIaUUpRoFU0PAWgWR0CgQPBUaQ3hdX2UKGgGaAloD0MIK27cYn4+IsCUhpRSlGgVS6NoFkdAoEFoLeANG3V9lChoBmgJaA9DCNBE2PB02nJAlIaUUpRoFU08AWgWR0CgQyr5AQg+dX2UKGgGaAloD0MI3J+Lhkw2cUCUhpRSlGgVS/1oFkdAoEQCNhmXgXV9lChoBmgJaA9DCJC93v3xNHBAlIaUUpRoFUvtaBZHQKBEwnfl6qt1fZQoaAZoCWgPQwha1ZKOcopCQJSGlFKUaBVL0GgWR0CgRW4REnb7dX2UKGgGaAloD0MIfgBSmziRc0CUhpRSlGgVTScBaBZHQKBGW1CPZIx1fZQoaAZoCWgPQwivXG+bKT5wQJSGlFKUaBVNNQFoFkdAoEf7tkWhy3V9lChoBmgJaA9DCOs4fqj01HBAlIaUUpRoFUvraBZHQKBIrOEdvKl1fZQoaAZoCWgPQwhNLVvry+1yQJSGlFKUaBVNDAFoFkdAoEl6XY150XV9lChoBmgJaA9DCLgehesRoXBAlIaUUpRoFUv2aBZHQKBK/A3T/hl1fZQoaAZoCWgPQwiPqbuyixBzQJSGlFKUaBVNMAFoFkdAoEwLoSteU3V9lChoBmgJaA9DCOse2Vy1eHBAlIaUUpRoFU0fAWgWR0CgTQhE8aGYdX2UKGgGaAloD0MI8+UF2Ed5TECUhpRSlGgVS65oFkdAoE2So60Y0nV9lChoBmgJaA9DCORME7bfhnBAlIaUUpRoFU0QAWgWR0CgTydn003wdX2UKGgGaAloD0MIiuYBLLJQcUCUhpRSlGgVTQ8BaBZHQKBQGY0EX+F1fZQoaAZoCWgPQwgKE0az8hJxQJSGlFKUaBVL92gWR0CgUOR1X/5tdX2UKGgGaAloD0MIySJNvAOcF0CUhpRSlGgVS6xoFkdAoFFiPQv6CXV9lChoBmgJaA9DCAOWXMUidHFAlIaUUpRoFUvvaBZHQKBSIS+QEIR1fZQoaAZoCWgPQwiXj6Skx+pxQJSGlFKUaBVNHwFoFkdAoFPPJNj9XXV9lChoBmgJaA9DCIVefxKf+x7AlIaUUpRoFUu8aBZHQKBUaHjZL7J1fZQoaAZoCWgPQwg/U69bhAdvQJSGlFKUaBVNAwFoFkdAoFU05hjOLXV9lChoBmgJaA9DCLRzmgXadUNAlIaUUpRoFUujaBZHQKBVsKcd5pt1fZQoaAZoCWgPQwi1G33MB/tuQJSGlFKUaBVNLgFoFkdAoFd6Oearm3V9lChoBmgJaA9DCIielEkNq21AlIaUUpRoFU0vAWgWR0CgWIozFdcCdX2UKGgGaAloD0MIFyr/Wh4ocECUhpRSlGgVTTABaBZHQKBZhs4T9Kp1fZQoaAZoCWgPQwh/2xMkdiJxQJSGlFKUaBVNEQFoFkdAoFpecriEQHV9lChoBmgJaA9DCB3MJsBwXXBAlIaUUpRoFU1NAWgWR0CgXAgaFVT8dX2UKGgGaAloD0MINnaJ6m33cECUhpRSlGgVTQIBaBZHQKBc39n9Nvh1fZQoaAZoCWgPQwh8KNGSx3lUQJSGlFKUaBVN6ANoFkdAoGE+3UhFE3V9lChoBmgJaA9DCEG4Agp1vnJAlIaUUpRoFU0bAWgWR0CgYgmp++dtdX2UKGgGaAloD0MI0NVW7C99QECUhpRSlGgVS9loFkdAoGNLjDKoynV9lChoBmgJaA9DCIogzsPJXHJAlIaUUpRoFU0bAWgWR0CgZBtZNfw7dX2UKGgGaAloD0MImpXtQ956bkCUhpRSlGgVTTEBaBZHQKBlCyeqaPV1fZQoaAZoCWgPQwjOUUfHFa9wQJSGlFKUaBVNcQFoFkdAoGYsona37XV9lChoBmgJaA9DCG3kuiklWXFAlIaUUpRoFU0yAWgWR0CgZ7QOnVG1dX2UKGgGaAloD0MITwRxHo7ZcECUhpRSlGgVTRUBaBZHQKBolvPTodN1fZQoaAZoCWgPQwh2wHXFDNlrQJSGlFKUaBVNHwFoFkdAoGls0YTCcnV9lChoBmgJaA9DCLtCHyxjtG5AlIaUUpRoFU0tAWgWR0CgavlCCz1LdX2UKGgGaAloD0MIlx3iH3YCcUCUhpRSlGgVTRoBaBZHQKBr1dIoVmB1fZQoaAZoCWgPQwgQzTy5polwQJSGlFKUaBVNPgFoFkdAoGzabvw3HnV9lChoBmgJaA9DCNSZe0i4THBAlIaUUpRoFU0YAWgWR0Cgba5k9U0fdX2UKGgGaAloD0MImn0eozxvQ0CUhpRSlGgVS69oFkdAoG7TSPU8WHV9lChoBmgJaA9DCMgkI2fhWnBAlIaUUpRoFU0qAWgWR0Cgb8LJ8v25dX2UKGgGaAloD0MIZCMQr+tmckCUhpRSlGgVTQoBaBZHQKBwlQ0GeMB1fZQoaAZoCWgPQwjSHcTOFBJJQJSGlFKUaBVLuWgWR0CgcSFaSs8xdX2UKGgGaAloD0MIjBTKwtd0cECUhpRSlGgVTRkBaBZHQKBynag26091fZQoaAZoCWgPQwjZtb3dEv5sQJSGlFKUaBVNPwFoFkdAoHOtEy+HrXV9lChoBmgJaA9DCEtzK4SVi3JAlIaUUpRoFU0HAWgWR0CgdH0D2alUdX2UKGgGaAloD0MIFF6CUx9JcUCUhpRSlGgVTT4BaBZHQKB2KWNWEK51fZQoaAZoCWgPQwjy6bEtw4FyQJSGlFKUaBVNJgFoFkdAoHcamfoRqXV9lChoBmgJaA9DCHE8nwE1UXFAlIaUUpRoFU0dAWgWR0CgeAr+xW1ddX2UKGgGaAloD0MID7VtGAXbb0CUhpRSlGgVTQ0BaBZHQKB46MnZ00Z1fZQoaAZoCWgPQwiCcXDpmARyQJSGlFKUaBVNQwFoFkdAoHqKya/h2nV9lChoBmgJaA9DCJFCWfh6FXJAlIaUUpRoFU2vA2gWR0Cgf0U1IiC8dX2UKGgGaAloD0MIBiy5igWUckCUhpRSlGgVS/hoFkdAoIAOfmLcbnV9lChoBmgJaA9DCKhWX13VMHFAlIaUUpRoFU03AWgWR0CggRz2OAAidX2UKGgGaAloD0MIURN9Psp0OkCUhpRSlGgVS7NoFkdAoIGlEmY0EXV9lChoBmgJaA9DCJViR+NQ/GBAlIaUUpRoFU3oA2gWR0CghipQ+EAYdX2UKGgGaAloD0MIIAw8915JcECUhpRSlGgVTSkBaBZHQKCHv/aQFLZ1fZQoaAZoCWgPQwhCB13CIRpgQJSGlFKUaBVN6ANoFkdAoIzgsK9f1HV9lChoBmgJaA9DCD6WPnTB7W5AlIaUUpRoFU0RAWgWR0CgjbdGI9DAdX2UKGgGaAloD0MIibFMv8StbkCUhpRSlGgVS/9oFkdAoI6DjNpudnV9lChoBmgJaA9DCHizBu+rbEZAlIaUUpRoFUvOaBZHQKCPHOUMXrN1fZQoaAZoCWgPQwjK+WLvBQlwQJSGlFKUaBVNVAFoFkdAoJD7uQZGa3V9lChoBmgJaA9DCEBrfvwlsm9AlIaUUpRoFUvqaBZHQKCRuVHFxXJ1fZQoaAZoCWgPQwj4pumzgyFuQJSGlFKUaBVNbwJoFkdAoJQ7i0fHP3V9lChoBmgJaA9DCDSEY5b9knBAlIaUUpRoFU0dAWgWR0CgldXqiXY2dX2UKGgGaAloD0MIS6shcU+bckCUhpRSlGgVTRwBaBZHQKCWtbWVeKN1fZQoaAZoCWgPQwjMYIxIlIlvQJSGlFKUaBVNFAFoFkdAoJeror4FinV9lChoBmgJaA9DCKtf6Xw4TnJAlIaUUpRoFU0DAWgWR0CgmU2cSXdCdX2UKGgGaAloD0MI4/xNKEQAMkCUhpRSlGgVS7VoFkdAoJnm9g4OtnV9lChoBmgJaA9DCB43/G46THFAlIaUUpRoFU0EAWgWR0Cgmr8W0qpcdX2UKGgGaAloD0MIkMAffj7OcECUhpRSlGgVTSABaBZHQKCbuZYxL011fZQoaAZoCWgPQwjOpiOAm+dgQJSGlFKUaBVN6ANoFkdAoKB+xD9fkXV9lChoBmgJaA9DCDkoYaZtGGJAlIaUUpRoFU3oA2gWR0CgpRpCBwuNdX2UKGgGaAloD0MInyKHiBtmcECUhpRSlGgVS/ZoFkdAoKXZ20Re1XV9lChoBmgJaA9DCB4zUBk/4HBAlIaUUpRoFU0jAWgWR0Cgp2yC4BmxdX2UKGgGaAloD0MIo5Ol1jsFcECUhpRSlGgVS/ZoFkdAoKg0+otL+XV9lChoBmgJaA9DCL68APvokm9AlIaUUpRoFU0gAWgWR0CgqR4BNmDldX2UKGgGaAloD0MI6brwg/PPYUCUhpRSlGgVTegDaBZHQKCuZ3aBZp11fZQoaAZoCWgPQwgFGQEVjgAsQJSGlFKUaBVL12gWR0CgrxS6lLvkdX2UKGgGaAloD0MIy9dl+M9gcECUhpRSlGgVTQkBaBZHQKCwpIZIg/11fZQoaAZoCWgPQwgQJO8cSmdxQJSGlFKUaBVNGQFoFkdAoLGEXDWK/HV9lChoBmgJaA9DCKbxC6/kAHFAlIaUUpRoFU0rAWgWR0CgsmzqbBoFdX2UKGgGaAloD0MIK/cCs8L8ckCUhpRSlGgVS+1oFkdAoLMa1og3cnV9lChoBmgJaA9DCA360tsfaHFAlIaUUpRoFU0cAWgWR0CgtJj/dZaFdX2UKGgGaAloD0MI6iXGMv2Wb0CUhpRSlGgVTRMBaBZHQKC1d14gRsd1fZQoaAZoCWgPQwgonrMFhJVwQJSGlFKUaBVNGQFoFkdAoLZW3KB/Z3V9lChoBmgJaA9DCAXgn1Ll33BAlIaUUpRoFU0ZAWgWR0Cgt/d07r9mdX2UKGgGaAloD0MIxQJf0a0JQUCUhpRSlGgVS+VoFkdAoLiubqhUR3V9lChoBmgJaA9DCPuytFNzc3FAlIaUUpRoFUvjaBZHQKC5XFhoduJ1fZQoaAZoCWgPQwjx8J4DC2xxQJSGlFKUaBVL7GgWR0CguhRKHwgDdX2UKGgGaAloD0MIUWfuIeE+bkCUhpRSlGgVTQoBaBZHQKC661dgOSZ1fZQoaAZoCWgPQwjyCdl521dwQJSGlFKUaBVNHwFoFkdAoLyRmTTvzHV9lChoBmgJaA9DCPEqa5uipHFAlIaUUpRoFU0oAWgWR0CgvX8oQWepdX2UKGgGaAloD0MIZDxKJfx4cECUhpRSlGgVTTwBaBZHQKC+hymQ8wJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUtDQwRkAVMAlE5HAAAAAAAAAACGlCmMAV+UhZSMHjxpcHl0aG9uLWlucHV0LTUtMjNlYmRhZWE0YTNkPpSMCDxsYW1iZGE+lEsNQwCUKSl0lFKUfZQojAtfX3BhY2thZ2VfX5ROjAhfX25hbWVfX5SMCF9fbWFpbl9flHVOTk50lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaBZ9lH2UKGgTaA2MDF9fcXVhbG5hbWVfX5RoDYwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoFIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5ROjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24f288a550>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24f288a5e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24f288a670>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24f288a700>", "_build": "<function ActorCriticPolicy._build at 0x7f24f288a790>", "forward": "<function ActorCriticPolicy.forward at 0x7f24f288a820>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24f288a8b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24f288a940>", "_predict": "<function ActorCriticPolicy._predict at 0x7f24f288a9d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24f288aa60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24f288aaf0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24f288ab80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f24f2881a50>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 425984, "_total_timesteps": 400000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677538884917862540, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAi0r0fTdS5AId7Nc2Osy/rjss68dK5tAAAgD8AAIA/ADqCPj21KzxEeSk2faoiNAzEuD3iVl21AACAPwAAgD/Nv+a8KeB7uir0DbrDz1Y1NCZuul+fJTkAAIA/AACAPzPPOr5DXAi88JvaN7oSjzVQhmo90uQAtwAAgD8AAIA/avPJPh43nz5xahu+DIGTvo2p4TttQ9S7AAAAAAAAAACalwc9SAW+uq3Z67w2vhs9TBi6OxoPA74AAIA/AACAP425WT76Ngu9K2+2O75QR7p/aXK+AGosuwAAgD8AAIA/ZqNlPrHSwj4Gnly9AhB/vti5KzzlpE09AAAAAAAAAAAagZq9uAaIue7OPzlNqFKzsD2Tu5KIZLgAAIA/AACAP81AqDvXIxC5dN5CtJ3djK1VOx27sOerMwAAgD8AAIA/mp7wvdd/Ezr1kJk6tGSguL1q9bs9y4s5AACAPwAAgD+A4m09z8+5P3aSMz7npYi+yGUxvKr9nTwAAAAAAAAAAOb0KL323B26rMCLOM0tJ7QyPP25pkCjtwAAgD8AAIA/JlPmPRRZlz+VwKQ+x9uGvnzZrD0H3ow9AAAAAAAAAABG+Ts+NOyOP1LtrD5gR4i+raPlPdCgzjwAAAAAAAAAAJrz2bw9fJA/x86vPBr5rL5JLc28pjekvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0649599999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+UhKehhHX0CUhpRSlIwBbJRN6AOMAXSUR0CAm33t8eCDdX2UKGgGaAloD0MIUaG6uXgHYUCUhpRSlGgVTegDaBZHQICpXxjJ+2F1fZQoaAZoCWgPQwiaCvFIvK5dQJSGlFKUaBVN6ANoFkdAgKtH446wMnV9lChoBmgJaA9DCOV+h6JA+mLAlIaUUpRoFU0nAmgWR0CAswTA31jBdX2UKGgGaAloD0MIh07Pu7GfY0CUhpRSlGgVTegDaBZHQICzdhNM4951fZQoaAZoCWgPQwiKk/sdig9ZQJSGlFKUaBVN6ANoFkdAgMvPMB6rvXV9lChoBmgJaA9DCFBTy9b621xAlIaUUpRoFU3oA2gWR0CAzjJ0W/JvdX2UKGgGaAloD0MIvK/KhcpWZcCUhpRSlGgVTYQCaBZHQIDSVD+irT91fZQoaAZoCWgPQwgO2UC62LBdQJSGlFKUaBVN6ANoFkdAgN8RDkU9IXV9lChoBmgJaA9DCIi9UMB2lF5AlIaUUpRoFU3oA2gWR0CA5FlCkXUIdX2UKGgGaAloD0MILC0j9Z46O0CUhpRSlGgVTegDaBZHQIDxJVyWAwx1fZQoaAZoCWgPQwjr4GBvYl5kQJSGlFKUaBVN6ANoFkdAgRZFKTSssHV9lChoBmgJaA9DCNANTdnpl15AlIaUUpRoFU3oA2gWR0CBHpFERaoudX2UKGgGaAloD0MIlRCsqherY0CUhpRSlGgVTegDaBZHQIEhlc4YJmd1fZQoaAZoCWgPQwiNQ/0ubNVbQJSGlFKUaBVN6ANoFkdAgSmmMGX5WXV9lChoBmgJaA9DCNKowMk2TV1AlIaUUpRoFU3oA2gWR0CBNjhUipvQdX2UKGgGaAloD0MID167tOFaW0CUhpRSlGgVTegDaBZHQIFKDpA2Q4l1fZQoaAZoCWgPQwgdW88QjjdfQJSGlFKUaBVN6ANoFkdAgi6u3c580HV9lChoBmgJaA9DCAfuQJ3y8WJAlIaUUpRoFU3oA2gWR0CCMAwsXizcdX2UKGgGaAloD0MI/Bu0V5+2YECUhpRSlGgVTegDaBZHQII17gwXZXd1fZQoaAZoCWgPQwhcOuY8Y+5dQJSGlFKUaBVN6ANoFkdAgjZB5HEuQXV9lChoBmgJaA9DCPq4NlSMjlxAlIaUUpRoFU3oA2gWR0CCTRutOmBOdX2UKGgGaAloD0MICFVq9kD6WkCUhpRSlGgVTegDaBZHQIJPoXsPatd1fZQoaAZoCWgPQwgfL6TDQ/BkQJSGlFKUaBVN6ANoFkdAglOXN9ph4XV9lChoBmgJaA9DCLEXCtiO8mxAlIaUUpRoFU0yA2gWR0CCVmM6RyOrdX2UKGgGaAloD0MIu9IyUu85GUCUhpRSlGgVTREBaBZHQIJcYISlFc91fZQoaAZoCWgPQwjWO9wOjW1gQJSGlFKUaBVN6ANoFkdAgl5Wt+1Bt3V9lChoBmgJaA9DCIaqmEo/ZldAlIaUUpRoFU3oA2gWR0CCYpQizLOidX2UKGgGaAloD0MIU5PgDek3b0CUhpRSlGgVTdECaBZHQIJizDsMRYl1fZQoaAZoCWgPQwghsd09wAFuQJSGlFKUaBVN5wFoFkdAgnSoyKvV3HV9lChoBmgJaA9DCNGUnX5QT11AlIaUUpRoFU3oA2gWR0CCkfppvgm7dX2UKGgGaAloD0MIyo0iaw3wXUCUhpRSlGgVTegDaBZHQIKU3SF49ox1fZQoaAZoCWgPQwgtQUZAhS1bQJSGlFKUaBVN6ANoFkdAgpxDv/io9HV9lChoBmgJaA9DCN+KxAS1OGxAlIaUUpRoFU02AmgWR0CCpJLPD50sdX2UKGgGaAloD0MICyWTU7s7YkCUhpRSlGgVTegDaBZHQIKmkU/OdG11fZQoaAZoCWgPQwjCaixh7XRqQJSGlFKUaBVNTgJoFkdAgqzv8yeqaXV9lChoBmgJaA9DCFw4EJIFRmNAlIaUUpRoFU3oA2gWR0CCtRK/VRUFdX2UKGgGaAloD0MIkpOJWwWCXUCUhpRSlGgVTegDaBZHQIK8mVkc0ch1fZQoaAZoCWgPQwhHIF7Xr35iQJSGlFKUaBVN6ANoFkdAgr2oMKCxvHV9lChoBmgJaA9DCNy93CeHSHBAlIaUUpRoFU2wAmgWR0CCv4ajvd/KdX2UKGgGaAloD0MIjKAxk6jzYECUhpRSlGgVTegDaBZHQILWsL0Bfa91fZQoaAZoCWgPQwjyJyobVllhQJSGlFKUaBVN6ANoFkdAgt0V3MY/FHV9lChoBmgJaA9DCBvV6UDWdFxAlIaUUpRoFU3oA2gWR0CC5jGCqZMMdX2UKGgGaAloD0MIblLRWPtaYECUhpRSlGgVTegDaBZHQILtbhky1u11fZQoaAZoCWgPQwjgvg6csyxmQJSGlFKUaBVN6ANoFkdAgu3SmIj4YnV9lChoBmgJaA9DCPxUFRqIo1NAlIaUUpRoFU3oA2gWR0CDDtyWAwwkdX2UKGgGaAloD0MIHvmDgefpbECUhpRSlGgVTQUCaBZHQIMQMgbIcR11fZQoaAZoCWgPQwgPK9zyEellQJSGlFKUaBVN6ANoFkdAgy5zBRAKOXV9lChoBmgJaA9DCM+6RssBemJAlIaUUpRoFU3oA2gWR0CDMS9Htnf3dX2UKGgGaAloD0MINbitLTxmXUCUhpRSlGgVTegDaBZHQIM4QCnxaxJ1fZQoaAZoCWgPQwiSPq2iP69hQJSGlFKUaBVN6ANoFkdAg0AnIyTINnV9lChoBmgJaA9DCBcrajANv2VAlIaUUpRoFU3oA2gWR0CDQig8KXv6dX2UKGgGaAloD0MI0ENtG8YJZUCUhpRSlGgVTegDaBZHQINIz2i+L3t1fZQoaAZoCWgPQwiEvYkhObFbQJSGlFKUaBVN6ANoFkdAg1GEjPfKp3V9lChoBmgJaA9DCAg8MIDwJlZAlIaUUpRoFU3oA2gWR0CENAuscQyzdX2UKGgGaAloD0MI0nE1siswYECUhpRSlGgVTegDaBZHQIQ1KTjebd91fZQoaAZoCWgPQwh8tDhjmDpvQJSGlFKUaBVNQwNoFkdAhDlJIDoyK3V9lChoBmgJaA9DCILGTKJemkFAlIaUUpRoFUu+aBZHQIRNHNNahYh1fZQoaAZoCWgPQwhzaJHtfP8UQJSGlFKUaBVNDwFoFkdAhE9MuFpPAXV9lChoBmgJaA9DCCzvqgdMtGJAlIaUUpRoFU3oA2gWR0CEVZua4MF2dX2UKGgGaAloD0MIQup29pUHcUCUhpRSlGgVTbQBaBZHQIRcGxdIGyJ1fZQoaAZoCWgPQwg0SMFTyNZeQJSGlFKUaBVN6ANoFkdAhF8VNg0CR3V9lChoBmgJaA9DCMWM8PYgCXBAlIaUUpRoFU3YA2gWR0CEY3fICEHudX2UKGgGaAloD0MIs7ES86zxY0CUhpRSlGgVTegDaBZHQIRlhEH+qBF1fZQoaAZoCWgPQwi8V61MeN5lQJSGlFKUaBVN6ANoFkdAhHi9hy8zynV9lChoBmgJaA9DCECiCRSxCl5AlIaUUpRoFU3oA2gWR0CEeX0z0pVkdX2UKGgGaAloD0MIhZZ1/9jgb0CUhpRSlGgVTTkDaBZHQISDyg00m+l1fZQoaAZoCWgPQwhGRZxOsilZQJSGlFKUaBVN6ANoFkdAhJEc4PwuunV9lChoBmgJaA9DCHzVyoRf22RAlIaUUpRoFU3oA2gWR0CEk7lar3j/dX2UKGgGaAloD0MIyenr+ZpEb0CUhpRSlGgVTZgBaBZHQISYIaef7Jp1fZQoaAZoCWgPQwgsLSP1ngtiQJSGlFKUaBVN6ANoFkdAhJn5f2K2rnV9lChoBmgJaA9DCAhYq3ZNrF1AlIaUUpRoFU3oA2gWR0CEpNFS88LbdX2UKGgGaAloD0MIxHk4gelMbkCUhpRSlGgVTcgBaBZHQIS/7Ysd1dR1fZQoaAZoCWgPQwgp6WFoNX1wQJSGlFKUaBVNuQJoFkdAhMBRoRIz33V9lChoBmgJaA9DCNXPm4pUvmBAlIaUUpRoFU3oA2gWR0CEwgDq4YrKdX2UKGgGaAloD0MI06I+yR1gZECUhpRSlGgVTegDaBZHQITFlxffGdZ1fZQoaAZoCWgPQwj5MHvZdplfQJSGlFKUaBVN6ANoFkdAhNY+F10T13V9lChoBmgJaA9DCLlxi/m5m2dAlIaUUpRoFU3oA2gWR0CE1/NFjNILdX2UKGgGaAloD0MIE2OZfomYRECUhpRSlGgVS9BoFkdAhNlU7KaG6HV9lChoBmgJaA9DCHfX2ZD/QG5AlIaUUpRoFU1eA2gWR0CE25QfIS13dX2UKGgGaAloD0MIsOO/QJBYcECUhpRSlGgVTXkDaBZHQITckH6dlNF1fZQoaAZoCWgPQwhnSBXFq0BmQJSGlFKUaBVN6ANoFkdAhN0waaTfSHV9lChoBmgJaA9DCHx9rUsNWmZAlIaUUpRoFU3dAWgWR0CE4JaTwDvFdX2UKGgGaAloD0MIxapBmJt/cECUhpRSlGgVTUgDaBZHQITrFUdaMaV1fZQoaAZoCWgPQwgm4q3zb7cfQJSGlFKUaBVLwmgWR0CE8GVclgMMdX2UKGgGaAloD0MItMh2vp/cRUCUhpRSlGgVS+hoFkdAhPKlPBSDRXV9lChoBmgJaA9DCD0P7s5a+HBAlIaUUpRoFU0rAWgWR0CFBoTYdyT7dX2UKGgGaAloD0MIYrzmVR1EYUCUhpRSlGgVTegDaBZHQIUM6rFOwgV1fZQoaAZoCWgPQwjuJY3RuhpjQJSGlFKUaBVN6ANoFkdAhRwP2PDHfnV9lChoBmgJaA9DCJjaUgd5PV9AlIaUUpRoFU3oA2gWR0CFHrMmnfl7dX2UKGgGaAloD0MIhnXj3ZGFa0CUhpRSlGgVTdIBaBZHQIUgU4tHxz91fZQoaAZoCWgPQwjbMAqCxyZgQJSGlFKUaBVN6ANoFkdAhSMju0CzTnV9lChoBmgJaA9DCExSmWKOvmJAlIaUUpRoFU3oA2gWR0CFJNoyKvV3dX2UKGgGaAloD0MIETgSaDBvbUCUhpRSlGgVTTkBaBZHQIUoJ3eN1hd1fZQoaAZoCWgPQwht5SX/k1s3wJSGlFKUaBVL92gWR0CFM5pu/DcedX2UKGgGaAloD0MIt376zxovakCUhpRSlGgVTfUBaBZHQIU2Asd1dPd1fZQoaAZoCWgPQwg74Lpixl5jQJSGlFKUaBVN6ANoFkdAhUE39itq6HV9lChoBmgJaA9DCGIx6lp7V19AlIaUUpRoFU3oA2gWR0CFQYszVMEidX2UKGgGaAloD0MItmXAWUqW5b+UhpRSlGgVTQYBaBZHQIVCI8bJfY11fZQoaAZoCWgPQwjnps04jc1vQJSGlFKUaBVNKgFoFkdAhULiRGMGYHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 130, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
first_try_model_lander.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccd02ec64bc0c9a43d338ab927b0a83cd70d2aca84e8757aba6b8d745b8d4fb1
3
+ size 147415
first_try_model_lander/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
first_try_model_lander/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f24f288a550>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f24f288a5e0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f24f288a670>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f24f288a700>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f24f288a790>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f24f288a820>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f24f288a8b0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f24f288a940>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f24f288a9d0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f24f288aa60>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f24f288aaf0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f24f288ab80>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f24f2881a50>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 16,
46
+ "num_timesteps": 425984,
47
+ "_total_timesteps": 400000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1677538884917862540,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIAi0r0fTdS5AId7Nc2Osy/rjss68dK5tAAAgD8AAIA/ADqCPj21KzxEeSk2faoiNAzEuD3iVl21AACAPwAAgD/Nv+a8KeB7uir0DbrDz1Y1NCZuul+fJTkAAIA/AACAPzPPOr5DXAi88JvaN7oSjzVQhmo90uQAtwAAgD8AAIA/avPJPh43nz5xahu+DIGTvo2p4TttQ9S7AAAAAAAAAACalwc9SAW+uq3Z67w2vhs9TBi6OxoPA74AAIA/AACAP425WT76Ngu9K2+2O75QR7p/aXK+AGosuwAAgD8AAIA/ZqNlPrHSwj4Gnly9AhB/vti5KzzlpE09AAAAAAAAAAAagZq9uAaIue7OPzlNqFKzsD2Tu5KIZLgAAIA/AACAP81AqDvXIxC5dN5CtJ3djK1VOx27sOerMwAAgD8AAIA/mp7wvdd/Ezr1kJk6tGSguL1q9bs9y4s5AACAPwAAgD+A4m09z8+5P3aSMz7npYi+yGUxvKr9nTwAAAAAAAAAAOb0KL323B26rMCLOM0tJ7QyPP25pkCjtwAAgD8AAIA/JlPmPRRZlz+VwKQ+x9uGvnzZrD0H3ow9AAAAAAAAAABG+Ts+NOyOP1LtrD5gR4i+raPlPdCgzjwAAAAAAAAAAJrz2bw9fJA/x86vPBr5rL5JLc28pjekvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.0649599999999999,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+UhKehhHX0CUhpRSlIwBbJRN6AOMAXSUR0CAm33t8eCDdX2UKGgGaAloD0MIUaG6uXgHYUCUhpRSlGgVTegDaBZHQICpXxjJ+2F1fZQoaAZoCWgPQwiaCvFIvK5dQJSGlFKUaBVN6ANoFkdAgKtH446wMnV9lChoBmgJaA9DCOV+h6JA+mLAlIaUUpRoFU0nAmgWR0CAswTA31jBdX2UKGgGaAloD0MIh07Pu7GfY0CUhpRSlGgVTegDaBZHQICzdhNM4951fZQoaAZoCWgPQwiKk/sdig9ZQJSGlFKUaBVN6ANoFkdAgMvPMB6rvXV9lChoBmgJaA9DCFBTy9b621xAlIaUUpRoFU3oA2gWR0CAzjJ0W/JvdX2UKGgGaAloD0MIvK/KhcpWZcCUhpRSlGgVTYQCaBZHQIDSVD+irT91fZQoaAZoCWgPQwgO2UC62LBdQJSGlFKUaBVN6ANoFkdAgN8RDkU9IXV9lChoBmgJaA9DCIi9UMB2lF5AlIaUUpRoFU3oA2gWR0CA5FlCkXUIdX2UKGgGaAloD0MILC0j9Z46O0CUhpRSlGgVTegDaBZHQIDxJVyWAwx1fZQoaAZoCWgPQwjr4GBvYl5kQJSGlFKUaBVN6ANoFkdAgRZFKTSssHV9lChoBmgJaA9DCNANTdnpl15AlIaUUpRoFU3oA2gWR0CBHpFERaoudX2UKGgGaAloD0MIlRCsqherY0CUhpRSlGgVTegDaBZHQIEhlc4YJmd1fZQoaAZoCWgPQwiNQ/0ubNVbQJSGlFKUaBVN6ANoFkdAgSmmMGX5WXV9lChoBmgJaA9DCNKowMk2TV1AlIaUUpRoFU3oA2gWR0CBNjhUipvQdX2UKGgGaAloD0MID167tOFaW0CUhpRSlGgVTegDaBZHQIFKDpA2Q4l1fZQoaAZoCWgPQwgdW88QjjdfQJSGlFKUaBVN6ANoFkdAgi6u3c580HV9lChoBmgJaA9DCAfuQJ3y8WJAlIaUUpRoFU3oA2gWR0CCMAwsXizcdX2UKGgGaAloD0MI/Bu0V5+2YECUhpRSlGgVTegDaBZHQII17gwXZXd1fZQoaAZoCWgPQwhcOuY8Y+5dQJSGlFKUaBVN6ANoFkdAgjZB5HEuQXV9lChoBmgJaA9DCPq4NlSMjlxAlIaUUpRoFU3oA2gWR0CCTRutOmBOdX2UKGgGaAloD0MICFVq9kD6WkCUhpRSlGgVTegDaBZHQIJPoXsPatd1fZQoaAZoCWgPQwgfL6TDQ/BkQJSGlFKUaBVN6ANoFkdAglOXN9ph4XV9lChoBmgJaA9DCLEXCtiO8mxAlIaUUpRoFU0yA2gWR0CCVmM6RyOrdX2UKGgGaAloD0MIu9IyUu85GUCUhpRSlGgVTREBaBZHQIJcYISlFc91fZQoaAZoCWgPQwjWO9wOjW1gQJSGlFKUaBVN6ANoFkdAgl5Wt+1Bt3V9lChoBmgJaA9DCIaqmEo/ZldAlIaUUpRoFU3oA2gWR0CCYpQizLOidX2UKGgGaAloD0MIU5PgDek3b0CUhpRSlGgVTdECaBZHQIJizDsMRYl1fZQoaAZoCWgPQwghsd09wAFuQJSGlFKUaBVN5wFoFkdAgnSoyKvV3HV9lChoBmgJaA9DCNGUnX5QT11AlIaUUpRoFU3oA2gWR0CCkfppvgm7dX2UKGgGaAloD0MIyo0iaw3wXUCUhpRSlGgVTegDaBZHQIKU3SF49ox1fZQoaAZoCWgPQwgtQUZAhS1bQJSGlFKUaBVN6ANoFkdAgpxDv/io9HV9lChoBmgJaA9DCN+KxAS1OGxAlIaUUpRoFU02AmgWR0CCpJLPD50sdX2UKGgGaAloD0MICyWTU7s7YkCUhpRSlGgVTegDaBZHQIKmkU/OdG11fZQoaAZoCWgPQwjCaixh7XRqQJSGlFKUaBVNTgJoFkdAgqzv8yeqaXV9lChoBmgJaA9DCFw4EJIFRmNAlIaUUpRoFU3oA2gWR0CCtRK/VRUFdX2UKGgGaAloD0MIkpOJWwWCXUCUhpRSlGgVTegDaBZHQIK8mVkc0ch1fZQoaAZoCWgPQwhHIF7Xr35iQJSGlFKUaBVN6ANoFkdAgr2oMKCxvHV9lChoBmgJaA9DCNy93CeHSHBAlIaUUpRoFU2wAmgWR0CCv4ajvd/KdX2UKGgGaAloD0MIjKAxk6jzYECUhpRSlGgVTegDaBZHQILWsL0Bfa91fZQoaAZoCWgPQwjyJyobVllhQJSGlFKUaBVN6ANoFkdAgt0V3MY/FHV9lChoBmgJaA9DCBvV6UDWdFxAlIaUUpRoFU3oA2gWR0CC5jGCqZMMdX2UKGgGaAloD0MIblLRWPtaYECUhpRSlGgVTegDaBZHQILtbhky1u11fZQoaAZoCWgPQwjgvg6csyxmQJSGlFKUaBVN6ANoFkdAgu3SmIj4YnV9lChoBmgJaA9DCPxUFRqIo1NAlIaUUpRoFU3oA2gWR0CDDtyWAwwkdX2UKGgGaAloD0MIHvmDgefpbECUhpRSlGgVTQUCaBZHQIMQMgbIcR11fZQoaAZoCWgPQwgPK9zyEellQJSGlFKUaBVN6ANoFkdAgy5zBRAKOXV9lChoBmgJaA9DCM+6RssBemJAlIaUUpRoFU3oA2gWR0CDMS9Htnf3dX2UKGgGaAloD0MINbitLTxmXUCUhpRSlGgVTegDaBZHQIM4QCnxaxJ1fZQoaAZoCWgPQwiSPq2iP69hQJSGlFKUaBVN6ANoFkdAg0AnIyTINnV9lChoBmgJaA9DCBcrajANv2VAlIaUUpRoFU3oA2gWR0CDQig8KXv6dX2UKGgGaAloD0MI0ENtG8YJZUCUhpRSlGgVTegDaBZHQINIz2i+L3t1fZQoaAZoCWgPQwiEvYkhObFbQJSGlFKUaBVN6ANoFkdAg1GEjPfKp3V9lChoBmgJaA9DCAg8MIDwJlZAlIaUUpRoFU3oA2gWR0CENAuscQyzdX2UKGgGaAloD0MI0nE1siswYECUhpRSlGgVTegDaBZHQIQ1KTjebd91fZQoaAZoCWgPQwh8tDhjmDpvQJSGlFKUaBVNQwNoFkdAhDlJIDoyK3V9lChoBmgJaA9DCILGTKJemkFAlIaUUpRoFUu+aBZHQIRNHNNahYh1fZQoaAZoCWgPQwhzaJHtfP8UQJSGlFKUaBVNDwFoFkdAhE9MuFpPAXV9lChoBmgJaA9DCCzvqgdMtGJAlIaUUpRoFU3oA2gWR0CEVZua4MF2dX2UKGgGaAloD0MIQup29pUHcUCUhpRSlGgVTbQBaBZHQIRcGxdIGyJ1fZQoaAZoCWgPQwg0SMFTyNZeQJSGlFKUaBVN6ANoFkdAhF8VNg0CR3V9lChoBmgJaA9DCMWM8PYgCXBAlIaUUpRoFU3YA2gWR0CEY3fICEHudX2UKGgGaAloD0MIs7ES86zxY0CUhpRSlGgVTegDaBZHQIRlhEH+qBF1fZQoaAZoCWgPQwi8V61MeN5lQJSGlFKUaBVN6ANoFkdAhHi9hy8zynV9lChoBmgJaA9DCECiCRSxCl5AlIaUUpRoFU3oA2gWR0CEeX0z0pVkdX2UKGgGaAloD0MIhZZ1/9jgb0CUhpRSlGgVTTkDaBZHQISDyg00m+l1fZQoaAZoCWgPQwhGRZxOsilZQJSGlFKUaBVN6ANoFkdAhJEc4PwuunV9lChoBmgJaA9DCHzVyoRf22RAlIaUUpRoFU3oA2gWR0CEk7lar3j/dX2UKGgGaAloD0MIyenr+ZpEb0CUhpRSlGgVTZgBaBZHQISYIaef7Jp1fZQoaAZoCWgPQwgsLSP1ngtiQJSGlFKUaBVN6ANoFkdAhJn5f2K2rnV9lChoBmgJaA9DCAhYq3ZNrF1AlIaUUpRoFU3oA2gWR0CEpNFS88LbdX2UKGgGaAloD0MIxHk4gelMbkCUhpRSlGgVTcgBaBZHQIS/7Ysd1dR1fZQoaAZoCWgPQwgp6WFoNX1wQJSGlFKUaBVNuQJoFkdAhMBRoRIz33V9lChoBmgJaA9DCNXPm4pUvmBAlIaUUpRoFU3oA2gWR0CEwgDq4YrKdX2UKGgGaAloD0MI06I+yR1gZECUhpRSlGgVTegDaBZHQITFlxffGdZ1fZQoaAZoCWgPQwj5MHvZdplfQJSGlFKUaBVN6ANoFkdAhNY+F10T13V9lChoBmgJaA9DCLlxi/m5m2dAlIaUUpRoFU3oA2gWR0CE1/NFjNILdX2UKGgGaAloD0MIE2OZfomYRECUhpRSlGgVS9BoFkdAhNlU7KaG6HV9lChoBmgJaA9DCHfX2ZD/QG5AlIaUUpRoFU1eA2gWR0CE25QfIS13dX2UKGgGaAloD0MIsOO/QJBYcECUhpRSlGgVTXkDaBZHQITckH6dlNF1fZQoaAZoCWgPQwhnSBXFq0BmQJSGlFKUaBVN6ANoFkdAhN0waaTfSHV9lChoBmgJaA9DCHx9rUsNWmZAlIaUUpRoFU3dAWgWR0CE4JaTwDvFdX2UKGgGaAloD0MIxapBmJt/cECUhpRSlGgVTUgDaBZHQITrFUdaMaV1fZQoaAZoCWgPQwgm4q3zb7cfQJSGlFKUaBVLwmgWR0CE8GVclgMMdX2UKGgGaAloD0MItMh2vp/cRUCUhpRSlGgVS+hoFkdAhPKlPBSDRXV9lChoBmgJaA9DCD0P7s5a+HBAlIaUUpRoFU0rAWgWR0CFBoTYdyT7dX2UKGgGaAloD0MIYrzmVR1EYUCUhpRSlGgVTegDaBZHQIUM6rFOwgV1fZQoaAZoCWgPQwjuJY3RuhpjQJSGlFKUaBVN6ANoFkdAhRwP2PDHfnV9lChoBmgJaA9DCJjaUgd5PV9AlIaUUpRoFU3oA2gWR0CFHrMmnfl7dX2UKGgGaAloD0MIhnXj3ZGFa0CUhpRSlGgVTdIBaBZHQIUgU4tHxz91fZQoaAZoCWgPQwjbMAqCxyZgQJSGlFKUaBVN6ANoFkdAhSMju0CzTnV9lChoBmgJaA9DCExSmWKOvmJAlIaUUpRoFU3oA2gWR0CFJNoyKvV3dX2UKGgGaAloD0MIETgSaDBvbUCUhpRSlGgVTTkBaBZHQIUoJ3eN1hd1fZQoaAZoCWgPQwht5SX/k1s3wJSGlFKUaBVL92gWR0CFM5pu/DcedX2UKGgGaAloD0MIt376zxovakCUhpRSlGgVTfUBaBZHQIU2Asd1dPd1fZQoaAZoCWgPQwg74Lpixl5jQJSGlFKUaBVN6ANoFkdAhUE39itq6HV9lChoBmgJaA9DCGIx6lp7V19AlIaUUpRoFU3oA2gWR0CFQYszVMEidX2UKGgGaAloD0MItmXAWUqW5b+UhpRSlGgVTQYBaBZHQIVCI8bJfY11fZQoaAZoCWgPQwjnps04jc1vQJSGlFKUaBVNKgFoFkdAhULiRGMGYHVlLg=="
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 130,
80
+ "n_steps": 2048,
81
+ "gamma": 0.99,
82
+ "gae_lambda": 0.95,
83
+ "ent_coef": 0.0,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 10,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
first_try_model_lander/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6a7293fa36b49c5d06cf6bde4b4ec97becd61340b460149253e687b3f844bac
3
+ size 87929
first_try_model_lander/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:198421c3afb01a220b1573229d0f35924f303d3a2f3276775399c150bc24c326
3
+ size 43393
first_try_model_lander/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
first_try_model_lander/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 218.2268967529554, "std_reward": 84.86417796973375, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T12:10:15.275122"}
 
1
+ {"mean_reward": 223.42066683609272, "std_reward": 19.50444617701963, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T23:13:23.948507"}