anastasoiu
commited on
Commit
•
8b172f5
1
Parent(s):
f43bdaa
Lunar lander v0 model
Browse files- README.md +37 -0
- config.json +1 -0
- model_0_ppo_lunar_lander.zip +3 -0
- model_0_ppo_lunar_lander/_stable_baselines3_version +1 -0
- model_0_ppo_lunar_lander/data +94 -0
- model_0_ppo_lunar_lander/policy.optimizer.pth +3 -0
- model_0_ppo_lunar_lander/policy.pth +3 -0
- model_0_ppo_lunar_lander/pytorch_variables.pth +3 -0
- model_0_ppo_lunar_lander/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
CHANGED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 263.05 +/- 16.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f61d816f310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f61d816f3a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f61d816f430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f61d816f4c0>", "_build": "<function ActorCriticPolicy._build at 0x7f61d816f550>", "forward": "<function ActorCriticPolicy.forward at 0x7f61d816f5e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f61d816f670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f61d816f700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f61d816f790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f61d816f820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f61d816f8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f61d8167ab0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673176732539535413, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2TIb70A6K89kLwvBRkHj1J67w9JltAvQAAgD8AAIA/mtCNPgyHcD8FT+8+QOYovyMWpT5FMbE9AAAAAAAAAAC6/CQ+HAkovFucZzvFqKy5e5iUvX4LjLoAAIA/AACAP8CeJz62iky8f1CfOsmZC7nWYK+9MhDhuQAAgD8AAIA/YEFHvts5HT9G2C6+ypkMv2ZiWL5tIgk9AAAAAAAAAACwmVi+oegAvW1BarpdoxC5IVhnPs0NoDkAAIA/AACAP2CSMD5ho5S8W3BDOktrgLhndw2+67GDuQAAgD8AAIA/qupvvsF5uLz1dFI7omCrOT0WIj6TiYK6AACAPwAAgD/m0RU9HcuvP5pU2T5cNZq+6jMgPLOEGj4AAAAAAAAAAIBGRL7blN68JjZSOnup9zis1Uk+bdWVuQAAgD8AAIA/hjxDvlwLZ7zLTIW5/Aint22cyT1rKIg4AACAPwAAgD+moVS+DlSWvHPy2TgzNao2pawKPvo4BrgAAIA/AACAP80XJL5PZim8TVjou8WHNrq3NqU95dAWOwAAgD8AAIA/M6fduwUqWD6K5wQ9Af+avgbS5jx1hhG8AAAAAAAAAADNOg282T/fPu/SiT2lfuq+26sTPeaFcz0AAAAAAAAAAA191T1hUeQ7Z1i0vVJ2C77on7G8hi9NPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM9/BTxzgcECUhpRSlIwBbJRLvowBdJRHQJZXbPjXFtN1fZQoaAZoCWgPQwjsTQzJyeRhQJSGlFKUaBVN6ANoFkdAllfcgQpWm3V9lChoBmgJaA9DCEchyawehnFAlIaUUpRoFUvIaBZHQJZYI8lolD51fZQoaAZoCWgPQwijIk4nmQ1xQJSGlFKUaBVL52gWR0CWWLVc2R7rdX2UKGgGaAloD0MIGjBI+vS+cUCUhpRSlGgVS9xoFkdAlljHqRlpXnV9lChoBmgJaA9DCA69xcN7AXFAlIaUUpRoFUvAaBZHQJZaTUTcqON1fZQoaAZoCWgPQwgqO/2gbm9xQJSGlFKUaBVLtmgWR0CWWpAB1cMWdX2UKGgGaAloD0MIwZFAg82tcUCUhpRSlGgVS9loFkdAllrfxQSBb3V9lChoBmgJaA9DCH2W58HdYnBAlIaUUpRoFUu5aBZHQJZbjpeNT991fZQoaAZoCWgPQwgPgLir1+NiQJSGlFKUaBVN6ANoFkdAllujVhCtzXV9lChoBmgJaA9DCD8Cf/j5rXJAlIaUUpRoFU0UAWgWR0CWW7RyfcvedX2UKGgGaAloD0MIS+mZXuIHbUCUhpRSlGgVS8doFkdAllwsTi83/HV9lChoBmgJaA9DCPGcLSB0cnFAlIaUUpRoFUveaBZHQJZcb+uNgjR1fZQoaAZoCWgPQwgoYDsY8YByQJSGlFKUaBVNEQFoFkdAll7a+36RAHV9lChoBmgJaA9DCE7VPbJ5RHFAlIaUUpRoFU0BAWgWR0CWX/rFwT/RdX2UKGgGaAloD0MIGr/wSlJ/cUCUhpRSlGgVS65oFkdAlmDVhG6PKnV9lChoBmgJaA9DCMGnOXmRoHBAlIaUUpRoFUvSaBZHQJZhElQdjoZ1fZQoaAZoCWgPQwhKfy+FB0NwQJSGlFKUaBVL9mgWR0CWYZpzcRDkdX2UKGgGaAloD0MILhoyHmVIcECUhpRSlGgVS9NoFkdAlmIsZ5zHTHV9lChoBmgJaA9DCBk74SW4529AlIaUUpRoFU1iAWgWR0CWY2X4j8k2dX2UKGgGaAloD0MIi90+q8ylckCUhpRSlGgVS/BoFkdAlmPL/GVAzHV9lChoBmgJaA9DCJsdqb5zOG5AlIaUUpRoFUvlaBZHQJZjymCROlB1fZQoaAZoCWgPQwi+pZwvNjhwQJSGlFKUaBVL0WgWR0CWZe+SbH6udX2UKGgGaAloD0MINWCQ9KlgckCUhpRSlGgVS+poFkdAlmgOKsMiKXV9lChoBmgJaA9DCD9VhQZi23BAlIaUUpRoFUvQaBZHQJZoTRkVerx1fZQoaAZoCWgPQwiMahFRTD5jQJSGlFKUaBVN6ANoFkdAlmj8zuWrwXV9lChoBmgJaA9DCHtrYKsEG3BAlIaUUpRoFUvRaBZHQJZpl0hePaN1fZQoaAZoCWgPQwjuz0VDxsxxQJSGlFKUaBVNCAFoFkdAlmoigkC3gHV9lChoBmgJaA9DCDuKc9RRMHBAlIaUUpRoFUv9aBZHQJZqgIToMa11fZQoaAZoCWgPQwgbR6zFJytxQJSGlFKUaBVL1GgWR0CWa00SRKYidX2UKGgGaAloD0MIKej2ksbGb0CUhpRSlGgVS+5oFkdAlmvLBbfP5nV9lChoBmgJaA9DCOlfkspUk3FAlIaUUpRoFUvmaBZHQJZr5bor4Fl1fZQoaAZoCWgPQwioqtBAbERyQJSGlFKUaBVLz2gWR0CWbTsFMZgpdX2UKGgGaAloD0MInWfsSzZ7ckCUhpRSlGgVS8loFkdAlm74Y77sOXV9lChoBmgJaA9DCDnulA5We2JAlIaUUpRoFU3oA2gWR0CWbzVXFLnLdX2UKGgGaAloD0MIIR6Jl6dicUCUhpRSlGgVS9FoFkdAlm9oLkS26XV9lChoBmgJaA9DCP88DRikbXNAlIaUUpRoFUu+aBZHQJZwVL8Jlat1fZQoaAZoCWgPQwhKz/QSY3hzQJSGlFKUaBVL02gWR0CWcH2NedCmdX2UKGgGaAloD0MIQrXBieiWb0CUhpRSlGgVS+ZoFkdAlnCTZtelbnV9lChoBmgJaA9DCJM3wMw3KXFAlIaUUpRoFUvfaBZHQJZxn4Irvst1fZQoaAZoCWgPQwgr+dhdYIlzQJSGlFKUaBVLyGgWR0CWcaCw8nuzdX2UKGgGaAloD0MIBMsRMtBRckCUhpRSlGgVS+NoFkdAlnLV5Sm65HV9lChoBmgJaA9DCMyyJ4FNV3BAlIaUUpRoFUvlaBZHQJZy/zjFQ2x1fZQoaAZoCWgPQwg7Gof63RxwQJSGlFKUaBVLzmgWR0CWc4dLg4wRdX2UKGgGaAloD0MIgGQ6dPr3Y0CUhpRSlGgVTegDaBZHQJZ0h1KXfIl1fZQoaAZoCWgPQwg4S8lykoxxQJSGlFKUaBVL0WgWR0CWdWe2uxKQdX2UKGgGaAloD0MIHbCryVMmcUCUhpRSlGgVS7VoFkdAlnXSFsYVI3V9lChoBmgJaA9DCEKZRpOLOG5AlIaUUpRoFUvFaBZHQJZ2KK/Efkp1fZQoaAZoCWgPQwiTHoZWJyhxQJSGlFKUaBVLtmgWR0CWdwQw9JSSdX2UKGgGaAloD0MIZrtCH6zeZECUhpRSlGgVTegDaBZHQJZ3HrVvuPV1fZQoaAZoCWgPQwiwx0RK869xQJSGlFKUaBVNCQFoFkdAlndI8uBczXV9lChoBmgJaA9DCIqw4elVanNAlIaUUpRoFU0YAWgWR0CWd1JlrdnCdX2UKGgGaAloD0MIyVUsftPbYkCUhpRSlGgVTegDaBZHQJZ3cTcqOLl1fZQoaAZoCWgPQwjGa17V2YRuQJSGlFKUaBVLzWgWR0CWeLjaPCEYdX2UKGgGaAloD0MIaxFRTB4qc0CUhpRSlGgVTRwBaBZHQJZ4wIqslsx1fZQoaAZoCWgPQwjbTlsjwkFyQJSGlFKUaBVL72gWR0CWecPqLS/kdX2UKGgGaAloD0MI7Sk5J/apYECUhpRSlGgVTegDaBZHQJZ5y1fE4vN1fZQoaAZoCWgPQwhn0qbqXvRxQJSGlFKUaBVNJgFoFkdAlnn5k078vXV9lChoBmgJaA9DCOBoxw2/zG5AlIaUUpRoFUvUaBZHQJZ6VxBE8aJ1fZQoaAZoCWgPQwibPGU13T5xQJSGlFKUaBVL92gWR0CWemhXr+o+dX2UKGgGaAloD0MIgh3/BYImYECUhpRSlGgVTegDaBZHQJZ6rigkC3h1fZQoaAZoCWgPQwhrD3uhwNRwQJSGlFKUaBVLxGgWR0CWey2mHgxbdX2UKGgGaAloD0MIxOxl2ymJcECUhpRSlGgVS99oFkdAlns92gWadHV9lChoBmgJaA9DCEt1AS8znHBAlIaUUpRoFUviaBZHQJZ7k5lvqC91fZQoaAZoCWgPQwiKVu4FZtNvQJSGlFKUaBVLwWgWR0CWe7Ov+wTudX2UKGgGaAloD0MI/gsEAXLXcECUhpRSlGgVS9ZoFkdAlnw3vx6OYXV9lChoBmgJaA9DCH2utmK/BXJAlIaUUpRoFUvRaBZHQJZ8OhysCDF1fZQoaAZoCWgPQwhagoyAioNxQJSGlFKUaBVL0WgWR0CWfEIAfdRBdX2UKGgGaAloD0MIXf5D+i1VcECUhpRSlGgVS89oFkdAln1qwUxmCnV9lChoBmgJaA9DCObpXFHKnm9AlIaUUpRoFUu9aBZHQJZ99iH6/It1fZQoaAZoCWgPQwjXTpSEBGVxQJSGlFKUaBVL62gWR0CWfiScbzbwdX2UKGgGaAloD0MI34rEBLUVbkCUhpRSlGgVS8hoFkdAln46+SKWLXV9lChoBmgJaA9DCJp3nKIjg0RAlIaUUpRoFUtZaBZHQJZ+SG/N7jV1fZQoaAZoCWgPQwj1aRX9oRBxQJSGlFKUaBVL3WgWR0CWfu5sj3VTdX2UKGgGaAloD0MISzrKwexbbkCUhpRSlGgVS8BoFkdAln788ox59nV9lChoBmgJaA9DCDl80omEgnBAlIaUUpRoFUvgaBZHQJaAkb5uZTh1fZQoaAZoCWgPQwh4eqUsQ8xvQJSGlFKUaBVL0mgWR0CWgPG9pRGddX2UKGgGaAloD0MIrtaJyzFrcUCUhpRSlGgVS8loFkdAloF0qMFUynV9lChoBmgJaA9DCJX0MLQ6FHFAlIaUUpRoFUvqaBZHQJaCkUfxMFl1fZQoaAZoCWgPQwjeyhKdZf9tQJSGlFKUaBVLxGgWR0CWgwvtMPBjdX2UKGgGaAloD0MIdJoF2l3gckCUhpRSlGgVTVsBaBZHQJaDXMkhRqJ1fZQoaAZoCWgPQwjswaT4+EduQJSGlFKUaBVL0GgWR0CWhFjjJdSmdX2UKGgGaAloD0MIs2DijyKpckCUhpRSlGgVS71oFkdAloTKshgVoHV9lChoBmgJaA9DCLjNVIhHeHBAlIaUUpRoFUvaaBZHQJaE3fZVXFN1fZQoaAZoCWgPQwgqi8IuiuBsQJSGlFKUaBVL3WgWR0CWhOV4X40udX2UKGgGaAloD0MI+igjLoCTb0CUhpRSlGgVS8VoFkdAloUXSOR1YHV9lChoBmgJaA9DCF8oYDuYom5AlIaUUpRoFUvKaBZHQJaG+47Rv3t1fZQoaAZoCWgPQwjZe/FFe9xuQJSGlFKUaBVLv2gWR0CWhwQtSQ5ndX2UKGgGaAloD0MI+N7foL3ebkCUhpRSlGgVS7poFkdAlokJSR8tw3V9lChoBmgJaA9DCL9lTpeFg3BAlIaUUpRoFUvYaBZHQJaJj0nPVut1fZQoaAZoCWgPQwigwabOIwhuQJSGlFKUaBVL6mgWR0CWixUhmoR7dX2UKGgGaAloD0MItTUiGAfPTECUhpRSlGgVS8FoFkdAlouQ5BC2MXV9lChoBmgJaA9DCAWlaOVeVXBAlIaUUpRoFUvaaBZHQJaLoyoGY8d1fZQoaAZoCWgPQwiNKsO42wBwQJSGlFKUaBVL9mgWR0CWjSeF+NLldX2UKGgGaAloD0MIsVOsGgQDb0CUhpRSlGgVS9toFkdAlo649s7+1nV9lChoBmgJaA9DCIy/7QkSVm5AlIaUUpRoFUu4aBZHQJaPphVlwtJ1fZQoaAZoCWgPQwhjRKLQsidxQJSGlFKUaBVNHAFoFkdAlpEfzvqkdnV9lChoBmgJaA9DCNzVq8hoFnBAlIaUUpRoFUvkaBZHQJaR7/6wdKd1fZQoaAZoCWgPQwiK5gEs8g5vQJSGlFKUaBVLyGgWR0CWknlenhsJdX2UKGgGaAloD0MI7j7HR0uicECUhpRSlGgVS9loFkdAlpO1Aqur63VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
model_0_ppo_lunar_lander.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f697317212467b498c1a05e260aec9ba22a9b73a859302ce5cf028d68bef901
|
3 |
+
size 147113
|
model_0_ppo_lunar_lander/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
model_0_ppo_lunar_lander/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f61d816f310>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f61d816f3a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f61d816f430>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f61d816f4c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f61d816f550>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f61d816f5e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f61d816f670>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f61d816f700>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f61d816f790>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f61d816f820>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f61d816f8b0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f61d8167ab0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1673176732539535413,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAA2TIb70A6K89kLwvBRkHj1J67w9JltAvQAAgD8AAIA/mtCNPgyHcD8FT+8+QOYovyMWpT5FMbE9AAAAAAAAAAC6/CQ+HAkovFucZzvFqKy5e5iUvX4LjLoAAIA/AACAP8CeJz62iky8f1CfOsmZC7nWYK+9MhDhuQAAgD8AAIA/YEFHvts5HT9G2C6+ypkMv2ZiWL5tIgk9AAAAAAAAAACwmVi+oegAvW1BarpdoxC5IVhnPs0NoDkAAIA/AACAP2CSMD5ho5S8W3BDOktrgLhndw2+67GDuQAAgD8AAIA/qupvvsF5uLz1dFI7omCrOT0WIj6TiYK6AACAPwAAgD/m0RU9HcuvP5pU2T5cNZq+6jMgPLOEGj4AAAAAAAAAAIBGRL7blN68JjZSOnup9zis1Uk+bdWVuQAAgD8AAIA/hjxDvlwLZ7zLTIW5/Aint22cyT1rKIg4AACAPwAAgD+moVS+DlSWvHPy2TgzNao2pawKPvo4BrgAAIA/AACAP80XJL5PZim8TVjou8WHNrq3NqU95dAWOwAAgD8AAIA/M6fduwUqWD6K5wQ9Af+avgbS5jx1hhG8AAAAAAAAAADNOg282T/fPu/SiT2lfuq+26sTPeaFcz0AAAAAAAAAAA191T1hUeQ7Z1i0vVJ2C77on7G8hi9NPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVMRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIM9/BTxzgcECUhpRSlIwBbJRLvowBdJRHQJZXbPjXFtN1fZQoaAZoCWgPQwjsTQzJyeRhQJSGlFKUaBVN6ANoFkdAllfcgQpWm3V9lChoBmgJaA9DCEchyawehnFAlIaUUpRoFUvIaBZHQJZYI8lolD51fZQoaAZoCWgPQwijIk4nmQ1xQJSGlFKUaBVL52gWR0CWWLVc2R7rdX2UKGgGaAloD0MIGjBI+vS+cUCUhpRSlGgVS9xoFkdAlljHqRlpXnV9lChoBmgJaA9DCA69xcN7AXFAlIaUUpRoFUvAaBZHQJZaTUTcqON1fZQoaAZoCWgPQwgqO/2gbm9xQJSGlFKUaBVLtmgWR0CWWpAB1cMWdX2UKGgGaAloD0MIwZFAg82tcUCUhpRSlGgVS9loFkdAllrfxQSBb3V9lChoBmgJaA9DCH2W58HdYnBAlIaUUpRoFUu5aBZHQJZbjpeNT991fZQoaAZoCWgPQwgPgLir1+NiQJSGlFKUaBVN6ANoFkdAllujVhCtzXV9lChoBmgJaA9DCD8Cf/j5rXJAlIaUUpRoFU0UAWgWR0CWW7RyfcvedX2UKGgGaAloD0MIS+mZXuIHbUCUhpRSlGgVS8doFkdAllwsTi83/HV9lChoBmgJaA9DCPGcLSB0cnFAlIaUUpRoFUveaBZHQJZcb+uNgjR1fZQoaAZoCWgPQwgoYDsY8YByQJSGlFKUaBVNEQFoFkdAll7a+36RAHV9lChoBmgJaA9DCE7VPbJ5RHFAlIaUUpRoFU0BAWgWR0CWX/rFwT/RdX2UKGgGaAloD0MIGr/wSlJ/cUCUhpRSlGgVS65oFkdAlmDVhG6PKnV9lChoBmgJaA9DCMGnOXmRoHBAlIaUUpRoFUvSaBZHQJZhElQdjoZ1fZQoaAZoCWgPQwhKfy+FB0NwQJSGlFKUaBVL9mgWR0CWYZpzcRDkdX2UKGgGaAloD0MILhoyHmVIcECUhpRSlGgVS9NoFkdAlmIsZ5zHTHV9lChoBmgJaA9DCBk74SW4529AlIaUUpRoFU1iAWgWR0CWY2X4j8k2dX2UKGgGaAloD0MIi90+q8ylckCUhpRSlGgVS/BoFkdAlmPL/GVAzHV9lChoBmgJaA9DCJsdqb5zOG5AlIaUUpRoFUvlaBZHQJZjymCROlB1fZQoaAZoCWgPQwi+pZwvNjhwQJSGlFKUaBVL0WgWR0CWZe+SbH6udX2UKGgGaAloD0MINWCQ9KlgckCUhpRSlGgVS+poFkdAlmgOKsMiKXV9lChoBmgJaA9DCD9VhQZi23BAlIaUUpRoFUvQaBZHQJZoTRkVerx1fZQoaAZoCWgPQwiMahFRTD5jQJSGlFKUaBVN6ANoFkdAlmj8zuWrwXV9lChoBmgJaA9DCHtrYKsEG3BAlIaUUpRoFUvRaBZHQJZpl0hePaN1fZQoaAZoCWgPQwjuz0VDxsxxQJSGlFKUaBVNCAFoFkdAlmoigkC3gHV9lChoBmgJaA9DCDuKc9RRMHBAlIaUUpRoFUv9aBZHQJZqgIToMa11fZQoaAZoCWgPQwgbR6zFJytxQJSGlFKUaBVL1GgWR0CWa00SRKYidX2UKGgGaAloD0MIKej2ksbGb0CUhpRSlGgVS+5oFkdAlmvLBbfP5nV9lChoBmgJaA9DCOlfkspUk3FAlIaUUpRoFUvmaBZHQJZr5bor4Fl1fZQoaAZoCWgPQwioqtBAbERyQJSGlFKUaBVLz2gWR0CWbTsFMZgpdX2UKGgGaAloD0MInWfsSzZ7ckCUhpRSlGgVS8loFkdAlm74Y77sOXV9lChoBmgJaA9DCDnulA5We2JAlIaUUpRoFU3oA2gWR0CWbzVXFLnLdX2UKGgGaAloD0MIIR6Jl6dicUCUhpRSlGgVS9FoFkdAlm9oLkS26XV9lChoBmgJaA9DCP88DRikbXNAlIaUUpRoFUu+aBZHQJZwVL8Jlat1fZQoaAZoCWgPQwhKz/QSY3hzQJSGlFKUaBVL02gWR0CWcH2NedCmdX2UKGgGaAloD0MIQrXBieiWb0CUhpRSlGgVS+ZoFkdAlnCTZtelbnV9lChoBmgJaA9DCJM3wMw3KXFAlIaUUpRoFUvfaBZHQJZxn4Irvst1fZQoaAZoCWgPQwgr+dhdYIlzQJSGlFKUaBVLyGgWR0CWcaCw8nuzdX2UKGgGaAloD0MIBMsRMtBRckCUhpRSlGgVS+NoFkdAlnLV5Sm65HV9lChoBmgJaA9DCMyyJ4FNV3BAlIaUUpRoFUvlaBZHQJZy/zjFQ2x1fZQoaAZoCWgPQwg7Gof63RxwQJSGlFKUaBVLzmgWR0CWc4dLg4wRdX2UKGgGaAloD0MIgGQ6dPr3Y0CUhpRSlGgVTegDaBZHQJZ0h1KXfIl1fZQoaAZoCWgPQwg4S8lykoxxQJSGlFKUaBVL0WgWR0CWdWe2uxKQdX2UKGgGaAloD0MIHbCryVMmcUCUhpRSlGgVS7VoFkdAlnXSFsYVI3V9lChoBmgJaA9DCEKZRpOLOG5AlIaUUpRoFUvFaBZHQJZ2KK/Efkp1fZQoaAZoCWgPQwiTHoZWJyhxQJSGlFKUaBVLtmgWR0CWdwQw9JSSdX2UKGgGaAloD0MIZrtCH6zeZECUhpRSlGgVTegDaBZHQJZ3HrVvuPV1fZQoaAZoCWgPQwiwx0RK869xQJSGlFKUaBVNCQFoFkdAlndI8uBczXV9lChoBmgJaA9DCIqw4elVanNAlIaUUpRoFU0YAWgWR0CWd1JlrdnCdX2UKGgGaAloD0MIyVUsftPbYkCUhpRSlGgVTegDaBZHQJZ3cTcqOLl1fZQoaAZoCWgPQwjGa17V2YRuQJSGlFKUaBVLzWgWR0CWeLjaPCEYdX2UKGgGaAloD0MIaxFRTB4qc0CUhpRSlGgVTRwBaBZHQJZ4wIqslsx1fZQoaAZoCWgPQwjbTlsjwkFyQJSGlFKUaBVL72gWR0CWecPqLS/kdX2UKGgGaAloD0MI7Sk5J/apYECUhpRSlGgVTegDaBZHQJZ5y1fE4vN1fZQoaAZoCWgPQwhn0qbqXvRxQJSGlFKUaBVNJgFoFkdAlnn5k078vXV9lChoBmgJaA9DCOBoxw2/zG5AlIaUUpRoFUvUaBZHQJZ6VxBE8aJ1fZQoaAZoCWgPQwibPGU13T5xQJSGlFKUaBVL92gWR0CWemhXr+o+dX2UKGgGaAloD0MIgh3/BYImYECUhpRSlGgVTegDaBZHQJZ6rigkC3h1fZQoaAZoCWgPQwhrD3uhwNRwQJSGlFKUaBVLxGgWR0CWey2mHgxbdX2UKGgGaAloD0MIxOxl2ymJcECUhpRSlGgVS99oFkdAlns92gWadHV9lChoBmgJaA9DCEt1AS8znHBAlIaUUpRoFUviaBZHQJZ7k5lvqC91fZQoaAZoCWgPQwiKVu4FZtNvQJSGlFKUaBVLwWgWR0CWe7Ov+wTudX2UKGgGaAloD0MI/gsEAXLXcECUhpRSlGgVS9ZoFkdAlnw3vx6OYXV9lChoBmgJaA9DCH2utmK/BXJAlIaUUpRoFUvRaBZHQJZ8OhysCDF1fZQoaAZoCWgPQwhagoyAioNxQJSGlFKUaBVL0WgWR0CWfEIAfdRBdX2UKGgGaAloD0MIXf5D+i1VcECUhpRSlGgVS89oFkdAln1qwUxmCnV9lChoBmgJaA9DCObpXFHKnm9AlIaUUpRoFUu9aBZHQJZ99iH6/It1fZQoaAZoCWgPQwjXTpSEBGVxQJSGlFKUaBVL62gWR0CWfiScbzbwdX2UKGgGaAloD0MI34rEBLUVbkCUhpRSlGgVS8hoFkdAln46+SKWLXV9lChoBmgJaA9DCJp3nKIjg0RAlIaUUpRoFUtZaBZHQJZ+SG/N7jV1fZQoaAZoCWgPQwj1aRX9oRBxQJSGlFKUaBVL3WgWR0CWfu5sj3VTdX2UKGgGaAloD0MISzrKwexbbkCUhpRSlGgVS8BoFkdAln788ox59nV9lChoBmgJaA9DCDl80omEgnBAlIaUUpRoFUvgaBZHQJaAkb5uZTh1fZQoaAZoCWgPQwh4eqUsQ8xvQJSGlFKUaBVL0mgWR0CWgPG9pRGddX2UKGgGaAloD0MIrtaJyzFrcUCUhpRSlGgVS8loFkdAloF0qMFUynV9lChoBmgJaA9DCJX0MLQ6FHFAlIaUUpRoFUvqaBZHQJaCkUfxMFl1fZQoaAZoCWgPQwjeyhKdZf9tQJSGlFKUaBVLxGgWR0CWgwvtMPBjdX2UKGgGaAloD0MIdJoF2l3gckCUhpRSlGgVTVsBaBZHQJaDXMkhRqJ1fZQoaAZoCWgPQwjswaT4+EduQJSGlFKUaBVL0GgWR0CWhFjjJdSmdX2UKGgGaAloD0MIs2DijyKpckCUhpRSlGgVS71oFkdAloTKshgVoHV9lChoBmgJaA9DCLjNVIhHeHBAlIaUUpRoFUvaaBZHQJaE3fZVXFN1fZQoaAZoCWgPQwgqi8IuiuBsQJSGlFKUaBVL3WgWR0CWhOV4X40udX2UKGgGaAloD0MI+igjLoCTb0CUhpRSlGgVS8VoFkdAloUXSOR1YHV9lChoBmgJaA9DCF8oYDuYom5AlIaUUpRoFUvKaBZHQJaG+47Rv3t1fZQoaAZoCWgPQwjZe/FFe9xuQJSGlFKUaBVLv2gWR0CWhwQtSQ5ndX2UKGgGaAloD0MI+N7foL3ebkCUhpRSlGgVS7poFkdAlokJSR8tw3V9lChoBmgJaA9DCL9lTpeFg3BAlIaUUpRoFUvYaBZHQJaJj0nPVut1fZQoaAZoCWgPQwigwabOIwhuQJSGlFKUaBVL6mgWR0CWixUhmoR7dX2UKGgGaAloD0MItTUiGAfPTECUhpRSlGgVS8FoFkdAlouQ5BC2MXV9lChoBmgJaA9DCAWlaOVeVXBAlIaUUpRoFUvaaBZHQJaLoyoGY8d1fZQoaAZoCWgPQwiNKsO42wBwQJSGlFKUaBVL9mgWR0CWjSeF+NLldX2UKGgGaAloD0MIsVOsGgQDb0CUhpRSlGgVS9toFkdAlo649s7+1nV9lChoBmgJaA9DCIy/7QkSVm5AlIaUUpRoFUu4aBZHQJaPphVlwtJ1fZQoaAZoCWgPQwhjRKLQsidxQJSGlFKUaBVNHAFoFkdAlpEfzvqkdnV9lChoBmgJaA9DCNzVq8hoFnBAlIaUUpRoFUvkaBZHQJaR7/6wdKd1fZQoaAZoCWgPQwiK5gEs8g5vQJSGlFKUaBVLyGgWR0CWknlenhsJdX2UKGgGaAloD0MI7j7HR0uicECUhpRSlGgVS9loFkdAlpO1Aqur63VlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 310,
|
79 |
+
"n_steps": 2048,
|
80 |
+
"gamma": 0.99,
|
81 |
+
"gae_lambda": 0.95,
|
82 |
+
"ent_coef": 0.0,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 10,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
model_0_ppo_lunar_lander/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:157dddb2e9187cfe445a39492146f86965a2f686847ac8cf21d3c49c5cdbfaa7
|
3 |
+
size 87929
|
model_0_ppo_lunar_lander/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f803daecd77e06ded7b42afa7674c7b1c95f8e272bd99086462a5483a552ba4c
|
3 |
+
size 43201
|
model_0_ppo_lunar_lander/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
model_0_ppo_lunar_lander/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (209 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 263.050879173219, "std_reward": 16.089159208518424, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-08T12:09:47.462084"}
|