Test commit
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/_stable_baselines3_version +1 -1
- ppo-LunarLander-v2/data +30 -29
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +2 -2
- ppo-LunarLander-v2/system_info.txt +7 -7
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -319.63 +/- 186.62
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f61398ee0d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f61398ee160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f61398ee1f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f61398ee280>", "_build": "<function ActorCriticPolicy._build at 0x7f61398ee310>", "forward": "<function ActorCriticPolicy.forward at 0x7f61398ee3a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f61398ee430>", "_predict": "<function ActorCriticPolicy._predict at 0x7f61398ee4c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f61398ee550>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f61398ee5e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f61398ee670>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f61398e6a20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673346165973382480, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM1q9D2Vf5I/5n2ePpIwsL5Q9sM9ABgYPgAAAAAAAAAAM2tCO6VJgT/rel09orievteeIb0FyIk9AAAAAAAAAACa7Ca9j14euh7lW7wBQTW+irmMO+g7Tj0AAAAAAAAAABh9nL6b2Hc/hTi1veNmg74glUO+HweyPQAAAAAAAAAAAFe+PVEnOD4t/CK+pNlmvtFPLLv94qm9AAAAAAAAAAAaD0q9KbwpOZwOtLyJTVq+frAKPTCybjwAAAAAAACAP3OGi717UD8/hS+1ObEwhL7xUqK9Z++tPAAAAAAAAAAAzdKaPJpwmD+I8OM7rsOMvlSVCbyW6W68AAAAAAAAAACAUVq9xt8cP2urnT4SEIm+0xxvPViPcjwAAAAAAAAAAAB647xcPD47/F5DvW+/Ub6AsmQ92TpKvAAAAAAAAIA/GtAMvZ/xlLsWM4m8f0iNPCwozrzbM3E9AACAPwAAgD8zzw29zWSrP3qME7/ckAa/4HcIPfYXcz0AAAAAAAAAAIrxpz5yFIA/byWSPHCYrb7sIbE9DyqEvAAAAAAAAAAAwEi3PSlIILpLENw5GiWjNFjXmboFvQK5AACAPwAAAADzRvY97fh/PmocAr5MMYq+VUoJPWoxjr0AAAAAAAAAAGZ+fz3SpIs/EMxMu3vXhr7/Hw89kgr9PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIFjHsMKaqcUCUhpRSlIwBbJRNRAGMAXSUR0CSKUUjcEeRdX2UKGgGaAloD0MI1O5XAT6XbkCUhpRSlGgVTYYBaBZHQJIqJtWMju91fZQoaAZoCWgPQwgx0LUvIDtjQJSGlFKUaBVN6ANoFkdAkiwC/oJRfnV9lChoBmgJaA9DCNC1L6CXg29AlIaUUpRoFU2BAWgWR0CSLCXbuc+adX2UKGgGaAloD0MIP3EA/b6LNkCUhpRSlGgVS/loFkdAkiySqlxffHV9lChoBmgJaA9DCD0K16MwiXBAlIaUUpRoFU3bAWgWR0CSQeMSK3uvdX2UKGgGaAloD0MI43FRLeLzcUCUhpRSlGgVTb8BaBZHQJJCIrCm/Fl1fZQoaAZoCWgPQwiZ2HxcG1NvQJSGlFKUaBVNZwFoFkdAkkJsCo0hvHV9lChoBmgJaA9DCCXOiqhJz3FAlIaUUpRoFU1tAWgWR0CSQoUQkHD8dX2UKGgGaAloD0MI4gLQKN3YY0CUhpRSlGgVTegDaBZHQJJD4N7SiM51fZQoaAZoCWgPQwgjaw2l9qNtQJSGlFKUaBVNcAFoFkdAkkT4LPUrkXV9lChoBmgJaA9DCE/LD1zl6XBAlIaUUpRoFU2XAWgWR0CSRe/wRXfZdX2UKGgGaAloD0MIMXiY9s20bECUhpRSlGgVTT4BaBZHQJJGXNOdoWZ1fZQoaAZoCWgPQwiMaDumLoJxQJSGlFKUaBVNMQFoFkdAkkaiGetjkXV9lChoBmgJaA9DCKDFUiTf2G1AlIaUUpRoFU1YAWgWR0CSRxqagElmdX2UKGgGaAloD0MINbVsra/kb0CUhpRSlGgVTVgBaBZHQJJHmFj/dZd1fZQoaAZoCWgPQwhaRuo9lXttQJSGlFKUaBVNTQFoFkdAkkhw+lj3EnV9lChoBmgJaA9DCJljeVe9c25AlIaUUpRoFU1IAWgWR0CSSpdqL0jDdX2UKGgGaAloD0MI/DVZox6BbUCUhpRSlGgVTWwBaBZHQJJLVhw2l2x1fZQoaAZoCWgPQwhslstG5xBRQJSGlFKUaBVNBwFoFkdAkkuMvAXVLHV9lChoBmgJaA9DCF36l6QyPG9AlIaUUpRoFU2CAWgWR0CSTDuk1uR+dX2UKGgGaAloD0MIKQmJtM0jcECUhpRSlGgVTUUBaBZHQJJNK9pRGc51fZQoaAZoCWgPQwiDNc6m489xQJSGlFKUaBVNRAFoFkdAkk1sbzbvgHV9lChoBmgJaA9DCJUNaypLeXBAlIaUUpRoFU08AWgWR0CSTqfqHGjsdX2UKGgGaAloD0MIYK5FC9CyOECUhpRSlGgVTQwBaBZHQJJPbuJDVpd1fZQoaAZoCWgPQwj6DRMNUjhwQJSGlFKUaBVNQQFoFkdAkk/xfShJy3V9lChoBmgJaA9DCJs6j4o/bXBAlIaUUpRoFU0sAWgWR0CSUCf1HvtudX2UKGgGaAloD0MIGJXUCWi7a0CUhpRSlGgVTUEBaBZHQJJR+TGHYYl1fZQoaAZoCWgPQwgoRpbMMcZyQJSGlFKUaBVNVwFoFkdAklJGOyVv/HV9lChoBmgJaA9DCHf1KjK6NnBAlIaUUpRoFU0mAWgWR0CSUna3Zwn6dX2UKGgGaAloD0MIclKY97hIcUCUhpRSlGgVTfABaBZHQJJSuT9sJpp1fZQoaAZoCWgPQwizCwbX3PtvQJSGlFKUaBVNWQFoFkdAklM99Dx9X3V9lChoBmgJaA9DCI83+S06c25AlIaUUpRoFU1BAWgWR0CSVTklu3tsdX2UKGgGaAloD0MIWHOAYI6bZECUhpRSlGgVTegDaBZHQJJVourZJ051fZQoaAZoCWgPQwh1VaAWA7RwQJSGlFKUaBVNUgFoFkdAklZvm5lOGnV9lChoBmgJaA9DCG0gXWzaH29AlIaUUpRoFU1CAWgWR0CSVsA0sOG1dX2UKGgGaAloD0MIUigLX19JckCUhpRSlGgVTS0BaBZHQJJXTa37UG51fZQoaAZoCWgPQwh+NnLdlC9xQJSGlFKUaBVNlAFoFkdAkljWmHgxanV9lChoBmgJaA9DCPPIHww8MW5AlIaUUpRoFU0gAWgWR0CSWOL/jsD5dX2UKGgGaAloD0MISKmEJ3RwbUCUhpRSlGgVTScBaBZHQJJZxlMAWBV1fZQoaAZoCWgPQwhDVUyl3+ZwQJSGlFKUaBVNMQFoFkdAklwqWkadc3V9lChoBmgJaA9DCELqdvYVu3FAlIaUUpRoFU2ZAWgWR0CSXIdEb5uZdX2UKGgGaAloD0MI5xn7kg38bECUhpRSlGgVTTABaBZHQJJdAb6xgRd1fZQoaAZoCWgPQwh88UV7vApvQJSGlFKUaBVNPwFoFkdAkl1FSGahH3V9lChoBmgJaA9DCDbOpiOAzGxAlIaUUpRoFU1GAWgWR0CSXnOFQEZBdX2UKGgGaAloD0MIHM78as5ZcECUhpRSlGgVTXoBaBZHQJJfPatcOb11fZQoaAZoCWgPQwhlw5rKooRJQJSGlFKUaBVL+2gWR0CSX77g88s+dX2UKGgGaAloD0MIdCSX/5DlbUCUhpRSlGgVTR4BaBZHQJJfw64lQdl1fZQoaAZoCWgPQwjgnXx67CZxQJSGlFKUaBVNSQFoFkdAkmC7q2SdOXV9lChoBmgJaA9DCF/ObFeo0HBAlIaUUpRoFU0hAWgWR0CSYXW+XZ5BdX2UKGgGaAloD0MIERssnOSgcUCUhpRSlGgVTRkBaBZHQJJitWLgn+h1fZQoaAZoCWgPQwgSEmkbv5txQJSGlFKUaBVNNQFoFkdAkmOp0W/JvHV9lChoBmgJaA9DCDXxDvDkMHBAlIaUUpRoFU0gAWgWR0CSeiQcxTKldX2UKGgGaAloD0MIZARUOIJBbkCUhpRSlGgVTTcBaBZHQJJ6o9xIatN1fZQoaAZoCWgPQwgTYi6pWi5vQJSGlFKUaBVNiQFoFkdAknsTv/io9HV9lChoBmgJaA9DCO9TVWig9HFAlIaUUpRoFU1GAWgWR0CSfB+u/1xsdX2UKGgGaAloD0MI3J21225QcECUhpRSlGgVTSkBaBZHQJJ8QMNMGot1fZQoaAZoCWgPQwgcQSrFDlVvQJSGlFKUaBVN1AJoFkdAknxZw84ginV9lChoBmgJaA9DCNKMRdMZbHBAlIaUUpRoFU18AWgWR0CSfRGHpKSQdX2UKGgGaAloD0MIvaqzWmDobkCUhpRSlGgVTTUBaBZHQJJ9bTspobp1fZQoaAZoCWgPQwhQVDas6YNxQJSGlFKUaBVNUwFoFkdAkn7SD/VAiXV9lChoBmgJaA9DCAt72uGvBm9AlIaUUpRoFU2EAWgWR0CSgJNWluWKdX2UKGgGaAloD0MIP3Jr0m23T0CUhpRSlGgVTQwBaBZHQJKAlBjWkJt1fZQoaAZoCWgPQwgeF9UiInpwQJSGlFKUaBVNMgFoFkdAkoDxcE/0NHV9lChoBmgJaA9DCME4uHSMjXJAlIaUUpRoFU1uAWgWR0CSgaD/lyR0dX2UKGgGaAloD0MI/MVsyWrwcECUhpRSlGgVTZ0BaBZHQJKCXoePq9p1fZQoaAZoCWgPQwiOlC2Sdi9JQJSGlFKUaBVL4WgWR0CSgn28Zk08dX2UKGgGaAloD0MIrptSXisXVkCUhpRSlGgVTegDaBZHQJKCx9fCyhV1fZQoaAZoCWgPQwjYRGYucGE3QJSGlFKUaBVL92gWR0CShDiRW912dX2UKGgGaAloD0MIQkEpWjlzcUCUhpRSlGgVTVkBaBZHQJKGBOxjawl1fZQoaAZoCWgPQwjy6bEtgyFyQJSGlFKUaBVNQAFoFkdAkobRSgoPTXV9lChoBmgJaA9DCCh8tg4OqXFAlIaUUpRoFU1KAWgWR0CSh0lJHy3DdX2UKGgGaAloD0MIMsnIWVjIcUCUhpRSlGgVTT4BaBZHQJKHlRQ79yd1fZQoaAZoCWgPQwjA7J48LKNwQJSGlFKUaBVNTAFoFkdAkohpHiFTN3V9lChoBmgJaA9DCAnDgCXX/HBAlIaUUpRoFU0dAWgWR0CSihCjUNKAdX2UKGgGaAloD0MIzmxX6AN1ckCUhpRSlGgVTVwBaBZHQJKKh97Wuox1fZQoaAZoCWgPQwgDJQUWAI5wQJSGlFKUaBVNKwFoFkdAkoryRB/qgXV9lChoBmgJaA9DCCOCcXDpXm5AlIaUUpRoFU1AAWgWR0CSi0eSB9ThdX2UKGgGaAloD0MIdT48SxA7ckCUhpRSlGgVTSwBaBZHQJKLrw9aEBd1fZQoaAZoCWgPQwjsGFdcHORcQJSGlFKUaBVN6ANoFkdAkoxHkkrwv3V9lChoBmgJaA9DCBizJasigm9AlIaUUpRoFU06AWgWR0CSjQWV/tpmdX2UKGgGaAloD0MIvJAOD6FCckCUhpRSlGgVTTUBaBZHQJKNJPGhmGx1fZQoaAZoCWgPQwjJA5FFmiVxQJSGlFKUaBVNEwFoFkdAko2U3CKrJnV9lChoBmgJaA9DCP9byY7NW3FAlIaUUpRoFU1lAWgWR0CSjjLWI42kdX2UKGgGaAloD0MIyjMvh90Ra0CUhpRSlGgVTVwCaBZHQJKPT3wkPc11fZQoaAZoCWgPQwgclZuopc1MQJSGlFKUaBVL3mgWR0CSj6qfvnbJdX2UKGgGaAloD0MIjo8WZwxVbECUhpRSlGgVTUQBaBZHQJKRpev6j351fZQoaAZoCWgPQwh+HM2RVUlxQJSGlFKUaBVNSgFoFkdAkpJOscQyynV9lChoBmgJaA9DCAL0+/7NHm5AlIaUUpRoFU1GAWgWR0CSknd3Sro4dX2UKGgGaAloD0MIB0Dc1auVbUCUhpRSlGgVTYgBaBZHQJKTHOnl4kh1fZQoaAZoCWgPQwhe86rO6pVtQJSGlFKUaBVNIgFoFkdAkpN96PbO/3V9lChoBmgJaA9DCHCUvDoH6nBAlIaUUpRoFU0NAWgWR0CSlNa99MK1dX2UKGgGaAloD0MIpDMw8jIicUCUhpRSlGgVTUkBaBZHQJKVaA08/2V1fZQoaAZoCWgPQwgyqgzjbrFyQJSGlFKUaBVNZQFoFkdAkpalawD/2nV9lChoBmgJaA9DCHVyhuKON29AlIaUUpRoFU03AWgWR0CSlujgQ6IWdX2UKGgGaAloD0MILH3ognqeckCUhpRSlGgVTYsBaBZHQJKXLNorWiF1fZQoaAZoCWgPQwgVyVcC6TxwQJSGlFKUaBVNcwFoFkdAkpd8MAmzB3V9lChoBmgJaA9DCFzHuOJiTnFAlIaUUpRoFU1hAWgWR0CSmFbRF7UodX2UKGgGaAloD0MIoDL+fUYTakCUhpRSlGgVTVoBaBZHQJKYi2UjcEh1fZQoaAZoCWgPQwg74SU4daRvQJSGlFKUaBVNXgFoFkdAkplKhcqvvHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 #1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb309e25820>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb309e258b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb309e25940>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb309e259d0>", "_build": "<function ActorCriticPolicy._build at 0x7fb309e25a60>", "forward": "<function ActorCriticPolicy.forward at 0x7fb309e25af0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb309e25b80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb309e25c10>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb309e25ca0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb309e25d30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb309e25dc0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb309e25e50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb309e20990>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 6144, "_total_timesteps": 5000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674212687207321471, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE2mH72k3I0/vssOvqTWKb8jLy68hj6WvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.2287999999999999, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVzQoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImYQLeQQ0b8CUhpRSlIwBbJRLYIwBdJRHQBDCWNWEK3N1fZQoaAZoCWgPQwiYGMv0y8VhwJSGlFKUaBVLTWgWR0AROB19v0iAdX2UKGgGaAloD0MI66pALQZ9V8CUhpRSlGgVS1FoFkdAEa2AG0NSZXV9lChoBmgJaA9DCA+6hENvrlzAlIaUUpRoFUtSaBZHQBImWQfZElV1fZQoaAZoCWgPQwgIO8WqQZxVwJSGlFKUaBVLP2gWR0ASgkGA08/2dX2UKGgGaAloD0MIdVd2weAqEcCUhpRSlGgVS0VoFkdAEvgieNDMNnV9lChoBmgJaA9DCEM6PITxTG7AlIaUUpRoFUtUaBZHQBNv1+RYA811fZQoaAZoCWgPQwjmdFlMrG13wJSGlFKUaBVLYWgWR0AUADNhVlwtdX2UKGgGaAloD0MIz582qpMveMCUhpRSlGgVS1poFkdAFIdszl90BHV9lChoBmgJaA9DCCHLgok/+k7AlIaUUpRoFUteaBZHQBUWAkLQXyl1fZQoaAZoCWgPQwiNJEG4AjRewJSGlFKUaBVLTGgWR0AVghePaL4vdX2UKGgGaAloD0MIrTB9r6GwZ8CUhpRSlGgVS1RoFkdAFfzf779AHHV9lChoBmgJaA9DCFpKlpNQF1vAlIaUUpRoFUteaBZHQBaFruYx+KF1fZQoaAZoCWgPQwi932jHTTBxwJSGlFKUaBVLbmgWR0AXMDJU5uIidX2UKGgGaAloD0MIZRniWBdNWcCUhpRSlGgVS0FoFkdAF5QumJm/WXV9lChoBmgJaA9DCLZI2o3+53PAlIaUUpRoFUtsaBZHQBhBbW3BpHt1fZQoaAZoCWgPQwi5OZUMANlqwJSGlFKUaBVLW2gWR0AYz5CWu5jIdX2UKGgGaAloD0MI9fI7TWagMMCUhpRSlGgVS1poFkdAGVSBbwBo3HV9lChoBmgJaA9DCPbU6qurx3vAlIaUUpRoFUt1aBZHQBoFuzhP0qZ1fZQoaAZoCWgPQwiGkPP+PwGBwJSGlFKUaBVLdGgWR0AaskeIVM24dX2UKGgGaAloD0MIIAw89x7UYsCUhpRSlGgVS1FoFkdAGzVqesgdO3V9lChoBmgJaA9DCJn1YiinjXjAlIaUUpRoFUt0aBZHQBviKNyYG+t1fZQoaAZoCWgPQwiHUnsRbcxYwJSGlFKUaBVLfmgWR0Ah3yMkyDZldX2UKGgGaAloD0MITKd1G9Q4a8CUhpRSlGgVS29oFkdAIjmJ3xFy73V9lChoBmgJaA9DCHAjZYukgFTAlIaUUpRoFUtNaBZHQCJzLZBcAzZ1fZQoaAZoCWgPQwineFxUC/duwJSGlFKUaBVLh2gWR0Ai2oVEd/8VdX2UKGgGaAloD0MITTCcaxjjZsCUhpRSlGgVS2hoFkdAIyYqPOpsGnV9lChoBmgJaA9DCD9XW7E/FGbAlIaUUpRoFUt1aBZHQCN8bm2b5M11fZQoaAZoCWgPQwiEKjV7oDlVwJSGlFKUaBVLSGgWR0Ajt9GZuyeJdX2UKGgGaAloD0MIo8haQylSasCUhpRSlGgVS09oFkdAI/KzzErGznV9lChoBmgJaA9DCKW762xI3GbAlIaUUpRoFUtYaBZHQCQyD7Ikqtp1fZQoaAZoCWgPQwip+wCkts5gwJSGlFKUaBVLRWgWR0AkYoAn2IwedX2UKGgGaAloD0MIA7UYPEwqW8CUhpRSlGgVS0JoFkdAJJGetjkMkXV9lChoBmgJaA9DCDs42JsY+GbAlIaUUpRoFUt5aBZHQCTluP3i7051fZQoaAZoCWgPQwgrFVRU/W1cwJSGlFKUaBVLP2gWR0AlEKoAGSpzdX2UKGgGaAloD0MIxcpo5PMWYMCUhpRSlGgVS1RoFkdAJU39zfaYeHV9lChoBmgJaA9DCMKGp1fKN1TAlIaUUpRoFUs+aBZHQCV71yvLX+V1fZQoaAZoCWgPQwglsg+yrPpuwJSGlFKUaBVLb2gWR0Al0anaWX1KdX2UKGgGaAloD0MIRP0ubM1cX8CUhpRSlGgVS1BoFkdAJgtSqEOAiHV9lChoBmgJaA9DCCQp6WFoY1DAlIaUUpRoFUs9aBZHQCY7ifg75mB1fZQoaAZoCWgPQwgbuAN1ypNHwJSGlFKUaBVLdWgWR0Amj2Pkq+ajdX2UKGgGaAloD0MI32sIjstCX8CUhpRSlGgVS0FoFkdAJsAP/aQFLXV9lChoBmgJaA9DCNf34SAhXlfAlIaUUpRoFUtNaBZHQCcA1+AmReV1fZQoaAZoCWgPQwg+d4L91xprwJSGlFKUaBVLcGgWR0AnWxX4j8k2dX2UKGgGaAloD0MIInL6er4gXcCUhpRSlGgVS1NoFkdAJ5szEaVD8nV9lChoBmgJaA9DCCTvHMpQb0FAlIaUUpRoFUtMaBZHQCtnAuZkTYd1fZQoaAZoCWgPQwgpWrkXmFxawJSGlFKUaBVLSGgWR0ArnnFHavicdX2UKGgGaAloD0MIR1oqb0csVcCUhpRSlGgVSz1oFkdAK8+vQnhKlHV9lChoBmgJaA9DCJzhBnz+5mTAlIaUUpRoFUtgaBZHQCwWPRzBAOd1fZQoaAZoCWgPQwjMXUvIh8djwJSGlFKUaBVLmWgWR0AskI1tO2y+dX2UKGgGaAloD0MIaCPXTemacMCUhpRSlGgVS21oFkdALOXnIQvpQnV9lChoBmgJaA9DCLvs151usmPAlIaUUpRoFUtlaBZHQC0zq6e5Fw11fZQoaAZoCWgPQwiyKsJNhgd4wJSGlFKUaBVLdmgWR0AtkCFsYVIqdX2UKGgGaAloD0MIfJ3Ul6WOUcCUhpRSlGgVS0ZoFkdALcEC/47A+XV9lChoBmgJaA9DCFg4SfNHIWLAlIaUUpRoFUuKaBZHQC4u2b5M10l1fZQoaAZoCWgPQwgf2PFfIJVcwJSGlFKUaBVLamgWR0Auf7Ikqto0dX2UKGgGaAloD0MIpztPPGehXcCUhpRSlGgVS0ZoFkdALrFiKBNEgHV9lChoBmgJaA9DCAKCOXr8/WHAlIaUUpRoFUtfaBZHQC71vS+g13t1fZQoaAZoCWgPQwhXQndJHOlswJSGlFKUaBVLVWgWR0AvNozN2TxHdX2UKGgGaAloD0MI0sjnFU83W8CUhpRSlGgVS3RoFkdAL5B1Tzd1uHV9lChoBmgJaA9DCP6ABwYQ9GXAlIaUUpRoFUtSaBZHQC/QlfJFLFp1fZQoaAZoCWgPQwiFz9bBQRRwwJSGlFKUaBVLbGgWR0AwElo11nuidX2UKGgGaAloD0MIt17Tg4LcXcCUhpRSlGgVS0xoFkdAMDDbeuV5bHV9lChoBmgJaA9DCKq3BrZKFVLAlIaUUpRoFUtOaBZHQDBNt2s7uD11fZQoaAZoCWgPQwiAgLVq1yJTwJSGlFKUaBVLeGgWR0Awek6Lfk3kdX2UKGgGaAloD0MIWcFvQ4zKXMCUhpRSlGgVS3NoFkdAMKUvboKUmnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7eff5a0a6125a3d0904248f5c8d9a4bbd6e2e6d71248466451eb7cdab25642d4
|
3 |
+
size 144809
|
ppo-LunarLander-v2/_stable_baselines3_version
CHANGED
@@ -1 +1 @@
|
|
1 |
-
1.
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
CHANGED
@@ -3,20 +3,21 @@
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"
|
14 |
-
"
|
15 |
-
"
|
16 |
-
"
|
17 |
-
"
|
|
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -41,52 +42,52 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
54 |
":type:": "<class 'function'>",
|
55 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
-
"gamma": 0.
|
81 |
-
"gae_lambda": 0.
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+
|
90 |
},
|
91 |
"clip_range_vf": null,
|
92 |
"normalize_advantage": true,
|
|
|
3 |
":type:": "<class 'abc.ABCMeta'>",
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fb309e25820>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb309e258b0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb309e25940>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb309e259d0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fb309e25a60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fb309e25af0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fb309e25b80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb309e25c10>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fb309e25ca0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb309e25d30>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb309e25dc0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb309e25e50>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fb309e20990>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
42 |
"dtype": "int64",
|
43 |
"_np_random": null
|
44 |
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 6144,
|
47 |
+
"_total_timesteps": 5000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1674212687207321471,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAE2mH72k3I0/vssOvqTWKb8jLy68hj6WvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.2287999999999999,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVzQoAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMImYQLeQQ0b8CUhpRSlIwBbJRLYIwBdJRHQBDCWNWEK3N1fZQoaAZoCWgPQwiYGMv0y8VhwJSGlFKUaBVLTWgWR0AROB19v0iAdX2UKGgGaAloD0MI66pALQZ9V8CUhpRSlGgVS1FoFkdAEa2AG0NSZXV9lChoBmgJaA9DCA+6hENvrlzAlIaUUpRoFUtSaBZHQBImWQfZElV1fZQoaAZoCWgPQwgIO8WqQZxVwJSGlFKUaBVLP2gWR0ASgkGA08/2dX2UKGgGaAloD0MIdVd2weAqEcCUhpRSlGgVS0VoFkdAEvgieNDMNnV9lChoBmgJaA9DCEM6PITxTG7AlIaUUpRoFUtUaBZHQBNv1+RYA811fZQoaAZoCWgPQwjmdFlMrG13wJSGlFKUaBVLYWgWR0AUADNhVlwtdX2UKGgGaAloD0MIz582qpMveMCUhpRSlGgVS1poFkdAFIdszl90BHV9lChoBmgJaA9DCCHLgok/+k7AlIaUUpRoFUteaBZHQBUWAkLQXyl1fZQoaAZoCWgPQwiNJEG4AjRewJSGlFKUaBVLTGgWR0AVghePaL4vdX2UKGgGaAloD0MIrTB9r6GwZ8CUhpRSlGgVS1RoFkdAFfzf779AHHV9lChoBmgJaA9DCFpKlpNQF1vAlIaUUpRoFUteaBZHQBaFruYx+KF1fZQoaAZoCWgPQwi932jHTTBxwJSGlFKUaBVLbmgWR0AXMDJU5uIidX2UKGgGaAloD0MIZRniWBdNWcCUhpRSlGgVS0FoFkdAF5QumJm/WXV9lChoBmgJaA9DCLZI2o3+53PAlIaUUpRoFUtsaBZHQBhBbW3BpHt1fZQoaAZoCWgPQwi5OZUMANlqwJSGlFKUaBVLW2gWR0AYz5CWu5jIdX2UKGgGaAloD0MI9fI7TWagMMCUhpRSlGgVS1poFkdAGVSBbwBo3HV9lChoBmgJaA9DCPbU6qurx3vAlIaUUpRoFUt1aBZHQBoFuzhP0qZ1fZQoaAZoCWgPQwiGkPP+PwGBwJSGlFKUaBVLdGgWR0AaskeIVM24dX2UKGgGaAloD0MIIAw89x7UYsCUhpRSlGgVS1FoFkdAGzVqesgdO3V9lChoBmgJaA9DCJn1YiinjXjAlIaUUpRoFUt0aBZHQBviKNyYG+t1fZQoaAZoCWgPQwiHUnsRbcxYwJSGlFKUaBVLfmgWR0Ah3yMkyDZldX2UKGgGaAloD0MITKd1G9Q4a8CUhpRSlGgVS29oFkdAIjmJ3xFy73V9lChoBmgJaA9DCHAjZYukgFTAlIaUUpRoFUtNaBZHQCJzLZBcAzZ1fZQoaAZoCWgPQwineFxUC/duwJSGlFKUaBVLh2gWR0Ai2oVEd/8VdX2UKGgGaAloD0MITTCcaxjjZsCUhpRSlGgVS2hoFkdAIyYqPOpsGnV9lChoBmgJaA9DCD9XW7E/FGbAlIaUUpRoFUt1aBZHQCN8bm2b5M11fZQoaAZoCWgPQwiEKjV7oDlVwJSGlFKUaBVLSGgWR0Ajt9GZuyeJdX2UKGgGaAloD0MIo8haQylSasCUhpRSlGgVS09oFkdAI/KzzErGznV9lChoBmgJaA9DCKW762xI3GbAlIaUUpRoFUtYaBZHQCQyD7Ikqtp1fZQoaAZoCWgPQwip+wCkts5gwJSGlFKUaBVLRWgWR0AkYoAn2IwedX2UKGgGaAloD0MIA7UYPEwqW8CUhpRSlGgVS0JoFkdAJJGetjkMkXV9lChoBmgJaA9DCDs42JsY+GbAlIaUUpRoFUt5aBZHQCTluP3i7051fZQoaAZoCWgPQwgrFVRU/W1cwJSGlFKUaBVLP2gWR0AlEKoAGSpzdX2UKGgGaAloD0MIxcpo5PMWYMCUhpRSlGgVS1RoFkdAJU39zfaYeHV9lChoBmgJaA9DCMKGp1fKN1TAlIaUUpRoFUs+aBZHQCV71yvLX+V1fZQoaAZoCWgPQwglsg+yrPpuwJSGlFKUaBVLb2gWR0Al0anaWX1KdX2UKGgGaAloD0MIRP0ubM1cX8CUhpRSlGgVS1BoFkdAJgtSqEOAiHV9lChoBmgJaA9DCCQp6WFoY1DAlIaUUpRoFUs9aBZHQCY7ifg75mB1fZQoaAZoCWgPQwgbuAN1ypNHwJSGlFKUaBVLdWgWR0Amj2Pkq+ajdX2UKGgGaAloD0MI32sIjstCX8CUhpRSlGgVS0FoFkdAJsAP/aQFLXV9lChoBmgJaA9DCNf34SAhXlfAlIaUUpRoFUtNaBZHQCcA1+AmReV1fZQoaAZoCWgPQwg+d4L91xprwJSGlFKUaBVLcGgWR0AnWxX4j8k2dX2UKGgGaAloD0MIInL6er4gXcCUhpRSlGgVS1NoFkdAJ5szEaVD8nV9lChoBmgJaA9DCCTvHMpQb0FAlIaUUpRoFUtMaBZHQCtnAuZkTYd1fZQoaAZoCWgPQwgpWrkXmFxawJSGlFKUaBVLSGgWR0ArnnFHavicdX2UKGgGaAloD0MIR1oqb0csVcCUhpRSlGgVSz1oFkdAK8+vQnhKlHV9lChoBmgJaA9DCJzhBnz+5mTAlIaUUpRoFUtgaBZHQCwWPRzBAOd1fZQoaAZoCWgPQwjMXUvIh8djwJSGlFKUaBVLmWgWR0AskI1tO2y+dX2UKGgGaAloD0MIaCPXTemacMCUhpRSlGgVS21oFkdALOXnIQvpQnV9lChoBmgJaA9DCLvs151usmPAlIaUUpRoFUtlaBZHQC0zq6e5Fw11fZQoaAZoCWgPQwiyKsJNhgd4wJSGlFKUaBVLdmgWR0AtkCFsYVIqdX2UKGgGaAloD0MIfJ3Ul6WOUcCUhpRSlGgVS0ZoFkdALcEC/47A+XV9lChoBmgJaA9DCFg4SfNHIWLAlIaUUpRoFUuKaBZHQC4u2b5M10l1fZQoaAZoCWgPQwgf2PFfIJVcwJSGlFKUaBVLamgWR0Auf7Ikqto0dX2UKGgGaAloD0MIpztPPGehXcCUhpRSlGgVS0ZoFkdALrFiKBNEgHV9lChoBmgJaA9DCAKCOXr8/WHAlIaUUpRoFUtfaBZHQC71vS+g13t1fZQoaAZoCWgPQwhXQndJHOlswJSGlFKUaBVLVWgWR0AvNozN2TxHdX2UKGgGaAloD0MI0sjnFU83W8CUhpRSlGgVS3RoFkdAL5B1Tzd1uHV9lChoBmgJaA9DCP6ABwYQ9GXAlIaUUpRoFUtSaBZHQC/QlfJFLFp1fZQoaAZoCWgPQwiFz9bBQRRwwJSGlFKUaBVLbGgWR0AwElo11nuidX2UKGgGaAloD0MIt17Tg4LcXcCUhpRSlGgVS0xoFkdAMDDbeuV5bHV9lChoBmgJaA9DCKq3BrZKFVLAlIaUUpRoFUtOaBZHQDBNt2s7uD11fZQoaAZoCWgPQwiAgLVq1yJTwJSGlFKUaBVLeGgWR0Awek6Lfk3kdX2UKGgGaAloD0MIWcFvQ4zKXMCUhpRSlGgVS3NoFkdAMKUvboKUmnVlLg=="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 30,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a8fa9f956b14682d8f4b491ee36145b6474e914130a95e177d379b5792c0a2f
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7f5012aa91fc1120dd13e00358a6ff5c77953255919527e17b0536d80782e7ad
|
3 |
+
size 43393
|
ppo-LunarLander-v2/system_info.txt
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
-
OS: Linux-5.10.147+-x86_64-with-glibc2.
|
2 |
-
Python: 3.8.
|
3 |
-
Stable-Baselines3: 1.
|
4 |
-
PyTorch: 1.13.
|
5 |
-
GPU Enabled: True
|
6 |
-
Numpy: 1.21.6
|
7 |
-
Gym: 0.21.0
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -319.627549, "std_reward": 186.62440788592204, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-20T11:05:04.598518"}
|