--- license: mit language: - ru library_name: transformers --- # llama-600M-rus Simple and customized amateur experimental model trained on approximately 60 Mb of text books from beginner in LLMs. No resources and time to collect bigger dataset. It could generate amateur, but more or less adequate output as well (in respect of training tokens)/ The work can be used as a checkpoint for the further training or for experiments. Simple usage example: ```python from transformers import LlamaTokenizerFast, LlamaForCausalLM model = LlamaForCausalLM.from_pretrained('demetera/llama-600M-rus') tokenizer = LlamaTokenizerFast.from_pretrained('demetera/llama-600M-rus') prompt = "Я вышел и улицу и" inputs = tokenizer(prompt, return_tensors='pt') outputs = model.generate(inputs.input_ids, attention_mask = inputs.attention_mask, max_new_tokens=250, do_sample=True, top_k=50, top_p=0.95) print (tokenizer.decode(outputs[0], skip_special_tokens=True)) ```