Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 250.63 +/- 21.44
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fac6ed72cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fac6ed72d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fac6ed72dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fac6ed72e60>", "_build": "<function ActorCriticPolicy._build at 0x7fac6ed72ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7fac6ed72f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fac6ed75050>", "_predict": "<function ActorCriticPolicy._predict at 0x7fac6ed750e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fac6ed75170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fac6ed75200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fac6ed75290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fac6ed42780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652012973.0232725, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGasGT65GFc+WneHvi4vpr46SYC8zTwAvQAAAAAAAAAAzfxbvcNZP7q1onu6Gk+UtvMtkDs/S5U5AACAPwAAgD+AiA691VkcP82eIry1Ziu/vM8qvGZmVLwAAAAAAAAAAObaFz70W1U+Kzxvvklst75q2m68le4VvQAAAAAAAAAAU4USPrXKNz6Ar1C+SSGovuPbkzzZaz29AAAAAAAAAABmQL48KVBUuhKMZjRUIUsvwgpaOSxcmLMAAIA/AACAP2b1Vj21o4c+fCEUvrLIxL6KNdS6DmplvQAAAAAAAAAAZtSZPDV3dD9dknQ9b2gwv9RgGT3JJoQ7AAAAAAAAAADtPTi+4ySAP1ah+L6AUCm/PoOPvrjgTr4AAAAAAAAAAGprtT5pDUQ/VlR+viKCAL/fE1E+olaHvgAAAAAAAAAAZgykvRSyzboTTEc9bU6SPJd1N7wwOn09AAAAAAAAgD+a4cS8x5toPyLZar2smD6/ahEhve61Hb0AAAAAAAAAAICrNr4gE7I/thUxv5BQtb5D7j++o0lRvgAAAAAAAAAAmuM6PGMSrz8Wuo4+2O0Evy30QrvOSWc8AAAAAAAAAAAQfIE+bzA9PzAa4T0l2Oa+ppq8PurHHTwAAAAAAAAAADM08TwFmou72r+2PZSoEr7gcpe8Utw7vwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyt5SzpfScECUhpRSlIwBbJRLxYwBdJRHQKtEoOJ+Dvp1fZQoaAZoCWgPQwiH4LiMm4pxQJSGlFKUaBVLv2gWR0CrRMNoakyldX2UKGgGaAloD0MI2v6Vleb1ckCUhpRSlGgVS69oFkdAq0Tiv3ai9XV9lChoBmgJaA9DCLKDSlzHqW9AlIaUUpRoFUuxaBZHQKtE65BkZrJ1fZQoaAZoCWgPQwhuh4bFqGVzQJSGlFKUaBVL+GgWR0CrRPg5R0lrdX2UKGgGaAloD0MIDjDzHbxgcUCUhpRSlGgVS9doFkdAq0UpeE7GN3V9lChoBmgJaA9DCMNHxJQIgHFAlIaUUpRoFUu/aBZHQKtFNq1w5vN1fZQoaAZoCWgPQwjYKVYNgpJwQJSGlFKUaBVLu2gWR0CrRXj1f3N+dX2UKGgGaAloD0MIy7kUV5VBbkCUhpRSlGgVS6poFkdAq0XD8YQ8OnV9lChoBmgJaA9DCDlkA+miXnFAlIaUUpRoFUvBaBZHQKtF/jYI0Il1fZQoaAZoCWgPQwg42nHD74ByQJSGlFKUaBVLq2gWR0CrRgRVIZqEdX2UKGgGaAloD0MIXTXPEbkWckCUhpRSlGgVS8poFkdAq0YYIyCWeHV9lChoBmgJaA9DCMQGCycpDnBAlIaUUpRoFUuxaBZHQKtGObiIcip1fZQoaAZoCWgPQwhc4zPZf9RyQJSGlFKUaBVL4GgWR0CrRjwA+6iCdX2UKGgGaAloD0MI/WfNj78ZckCUhpRSlGgVS9BoFkdAq0ZtxuKoAHV9lChoBmgJaA9DCAN9Ik/S8HFAlIaUUpRoFUvRaBZHQKtGco2GZeB1fZQoaAZoCWgPQwg4oKUrWFBzQJSGlFKUaBVL0WgWR0CrRnSsCDEndX2UKGgGaAloD0MITl5kAj5ecUCUhpRSlGgVS7loFkdAq0abvNNahnV9lChoBmgJaA9DCOxP4nPnH3RAlIaUUpRoFUvSaBZHQKtGtTuOS4h1fZQoaAZoCWgPQwgw2uOF9ORwQJSGlFKUaBVLwmgWR0CrRrqRdQfqdX2UKGgGaAloD0MIONxHbo0sckCUhpRSlGgVS8xoFkdAq0cPjhky13V9lChoBmgJaA9DCNdLUwS4rnFAlIaUUpRoFUvpaBZHQKtHH5Pdl/Z1fZQoaAZoCWgPQwhJvDydayVxQJSGlFKUaBVL02gWR0CrRy1/+bVjdX2UKGgGaAloD0MI/MQB9Pu0bkCUhpRSlGgVS65oFkdAq0dkmtyPuHV9lChoBmgJaA9DCEdUqG7u2HBAlIaUUpRoFUvRaBZHQKtHb6By0a91fZQoaAZoCWgPQwiQvd798b1yQJSGlFKUaBVLvGgWR0CrR8DQRf4RdX2UKGgGaAloD0MImdcRh6zsckCUhpRSlGgVS8RoFkdAq0fovHtF8XV9lChoBmgJaA9DCDwzwXAu7nJAlIaUUpRoFUu/aBZHQKtH/13+uNh1fZQoaAZoCWgPQwiQaAJFbNFxQJSGlFKUaBVLv2gWR0CrSAGiHqNZdX2UKGgGaAloD0MIym5m9KMIcECUhpRSlGgVS6hoFkdAq0gBsyi22HV9lChoBmgJaA9DCE1O7QzTEXBAlIaUUpRoFUuvaBZHQKtIEA8Swnp1fZQoaAZoCWgPQwgTtp+MsWdwQJSGlFKUaBVLp2gWR0CrSDlyq+8HdX2UKGgGaAloD0MIqrpHNlcLdECUhpRSlGgVS/ZoFkdAq0hELa24NXV9lChoBmgJaA9DCBDs+C8QYXBAlIaUUpRoFUu2aBZHQKtIQ5oXbdt1fZQoaAZoCWgPQwg+y/PgLi5wQJSGlFKUaBVLtGgWR0CrSFr/jsD5dX2UKGgGaAloD0MIJSL8i+C8ckCUhpRSlGgVS+hoFkdAq0iHHLida3V9lChoBmgJaA9DCFaDMLd713FAlIaUUpRoFUucaBZHQKtIl3XZoPF1fZQoaAZoCWgPQwgxPzc0ZdBxQJSGlFKUaBVLrWgWR0CrSK9kz41xdX2UKGgGaAloD0MIVmKelXQMcECUhpRSlGgVS6BoFkdAq0jhaNdZ73V9lChoBmgJaA9DCJceTfXk+nFAlIaUUpRoFUvRaBZHQKtI9UsnRb91fZQoaAZoCWgPQwhy+Q/pt1VzQJSGlFKUaBVLrGgWR0CrSPS/bj95dX2UKGgGaAloD0MI02ndBjWVcECUhpRSlGgVS7VoFkdAq0mqj8DSxHV9lChoBmgJaA9DCNZW7C/7V3JAlIaUUpRoFUvBaBZHQKtJ3d+ocaR1fZQoaAZoCWgPQwhuTE9YYgB0QJSGlFKUaBVL42gWR0CrSeLA57w8dX2UKGgGaAloD0MIEwznGma3cUCUhpRSlGgVS5ZoFkdAq0n95Sm65HV9lChoBmgJaA9DCPkwe9l233BAlIaUUpRoFUu4aBZHQKtKA3I+4b11fZQoaAZoCWgPQwg3NGWnHyJyQJSGlFKUaBVL1mgWR0CrSgWFWXC1dX2UKGgGaAloD0MIamrZWl/7ckCUhpRSlGgVS75oFkdAq0oIPiDM/3V9lChoBmgJaA9DCEvNHmgFrHFAlIaUUpRoFUuVaBZHQKtKCvf0mMR1fZQoaAZoCWgPQwjf3coS3RRxQJSGlFKUaBVLvmgWR0CrShNZmqYJdX2UKGgGaAloD0MIAn/4+a+lckCUhpRSlGgVS+doFkdAq0oWTFERa3V9lChoBmgJaA9DCMEffv77SXJAlIaUUpRoFUvoaBZHQKtKLLQokRl1fZQoaAZoCWgPQwjRIXAkkHJwQJSGlFKUaBVLsmgWR0CrSmGrjo6kdX2UKGgGaAloD0MIRfRr66fXcUCUhpRSlGgVS5ZoFkdAq0pj74zrNXV9lChoBmgJaA9DCPoMqDejkHJAlIaUUpRoFUvaaBZHQKtKZ0YCQtB1fZQoaAZoCWgPQwiismFNpTRyQJSGlFKUaBVLqWgWR0CrSnxqO939dX2UKGgGaAloD0MIQ8nk1E6CckCUhpRSlGgVS9hoFkdAq0sAInjQzHV9lChoBmgJaA9DCCXK3lIO5HBAlIaUUpRoFUupaBZHQKtLeNNJvpB1fZQoaAZoCWgPQwiOImsNpYpxQJSGlFKUaBVLnmgWR0CrS4H1WbPQdX2UKGgGaAloD0MIaVTgZJvNcECUhpRSlGgVS5loFkdAq0uJ4QjD9HV9lChoBmgJaA9DCGk4ZW5++XFAlIaUUpRoFUutaBZHQKtLsGhVU+91fZQoaAZoCWgPQwjI7ZdPlpVxQJSGlFKUaBVLu2gWR0CrS7CV8kUsdX2UKGgGaAloD0MID9Qpj25gckCUhpRSlGgVS+BoFkdAq0vbRD1GsnV9lChoBmgJaA9DCIWX4NTHGHJAlIaUUpRoFUu/aBZHQKtL7GGVRk51fZQoaAZoCWgPQwjtmSUBapJxQJSGlFKUaBVLxWgWR0CrS+2OQyRCdX2UKGgGaAloD0MI6+HLRJGlcUCUhpRSlGgVS9NoFkdAq0wI5YHPeHV9lChoBmgJaA9DCGSyuP/IDXBAlIaUUpRoFUunaBZHQKtMDMLWqcV1fZQoaAZoCWgPQwhqZ5jaErhyQJSGlFKUaBVL1mgWR0CrTBsC1Z1WdX2UKGgGaAloD0MIwXEZN7XSc0CUhpRSlGgVS8FoFkdAq0xGsgdOqXV9lChoBmgJaA9DCPlmmxvTo3JAlIaUUpRoFUv7aBZHQKtMmdrftQd1fZQoaAZoCWgPQwiw5ZXrLQ5yQJSGlFKUaBVL2WgWR0CrTKHBDXvqdX2UKGgGaAloD0MIXfjB+VTdckCUhpRSlGgVS+5oFkdAq0y92ovSMXV9lChoBmgJaA9DCFThz/CmRnFAlIaUUpRoFUueaBZHQKtNC4rBj4J1fZQoaAZoCWgPQwgqVg3CXNJxQJSGlFKUaBVL1WgWR0CrTR0163RYdX2UKGgGaAloD0MIAfkSKjgXb0CUhpRSlGgVS6xoFkdAq00mvB7/oHV9lChoBmgJaA9DCIVcqWdB13JAlIaUUpRoFUubaBZHQKtNZHggow51fZQoaAZoCWgPQwiOXDelvDlxQJSGlFKUaBVLxmgWR0CrTXSrxRVIdX2UKGgGaAloD0MIB7Ezhc7McUCUhpRSlGgVS8RoFkdAq02Scy31BnV9lChoBmgJaA9DCNtpa0Qwp3BAlIaUUpRoFUvHaBZHQKtNmelsP8R1fZQoaAZoCWgPQwgcYOY7OIlyQJSGlFKUaBVLnmgWR0CrTZ0u+RHPdX2UKGgGaAloD0MIpddmY6W6cUCUhpRSlGgVS89oFkdAq03kj9n9N3V9lChoBmgJaA9DCJqy0w8qW3JAlIaUUpRoFUvXaBZHQKtN579AHFB1fZQoaAZoCWgPQwjBqKROwHpzQJSGlFKUaBVLymgWR0CrTfREF4cFdX2UKGgGaAloD0MIh2wgXawMckCUhpRSlGgVS9VoFkdAq04P9tMwlHV9lChoBmgJaA9DCPuw3qgVW3FAlIaUUpRoFUvPaBZHQKtOPIZqEe11fZQoaAZoCWgPQwi8CFOUy1NyQJSGlFKUaBVLomgWR0CrTkHMt9QXdX2UKGgGaAloD0MIgsr499m6ckCUhpRSlGgVS7doFkdAq05ZQHiWFHV9lChoBmgJaA9DCD0MrU4OpXJAlIaUUpRoFUvLaBZHQKtOgIhyKel1fZQoaAZoCWgPQwjUf9b8OLtzQJSGlFKUaBVLvGgWR0CrTs6TW5H3dX2UKGgGaAloD0MI0CozpXX2c0CUhpRSlGgVS7ZoFkdAq07amsNlRXV9lChoBmgJaA9DCC/6CtJMgHFAlIaUUpRoFUufaBZHQKtO4PBi1At1fZQoaAZoCWgPQwh63o0FBUJwQJSGlFKUaBVLw2gWR0CrTu/BWPtEdX2UKGgGaAloD0MIYOemzTh8c0CUhpRSlGgVS7BoFkdAq08V+LFXJnV9lChoBmgJaA9DCOzdH+9VPHJAlIaUUpRoFUvCaBZHQKtPZMN+b3J1fZQoaAZoCWgPQwgyAFRx44VvQJSGlFKUaBVLo2gWR0CrT3UNSZSfdX2UKGgGaAloD0MIwqONI1Z8c0CUhpRSlGgVS9xoFkdAq0+fcUM5O3V9lChoBmgJaA9DCPC/lezYInNAlIaUUpRoFUvcaBZHQKtPqb1AZ891fZQoaAZoCWgPQwgvhQfNrr5wQJSGlFKUaBVLvmgWR0CrT6yU9pyqdX2UKGgGaAloD0MIowOSsC98cUCUhpRSlGgVS8JoFkdAq0+zSZ0CBHV9lChoBmgJaA9DCNAlHHoLbHJAlIaUUpRoFUvEaBZHQKtP4+s5n151ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 470, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f1e54397950>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1e543979e0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1e54397a70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1e54397b00>", "_build": "<function ActorCriticPolicy._build at 0x7f1e54397b90>", "forward": "<function ActorCriticPolicy.forward at 0x7f1e54397c20>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1e54397cb0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f1e54397d40>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1e54397dd0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1e54397e60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1e54397ef0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f1e543e49f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652058653.117655, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANpSHz6UAYE/xpUaPZlh2r7oIzQ+prB6vQAAAAAAAAAAzYKMPB/Fp7k9GHA6fIjLNQtQcDvEvoy5AACAPwAAgD/z39A99kwputCv4bq//ka2u7yCOeUUAjoAAIA/AACAPxo0gT241v+5qAV8OuLL0TTXXi+69n+RuQAAgD8AAIA/mjE5vOG0gboiqOE6EdsNNffRZruv5AK6AACAPwAAgD+zQ049haOquT3jZrrzu0+1xQCrOSLxhTkAAIA/AACAP3NrzD3DBS26vO6OufyiFrUrKYM7elamOAAAgD8AAIA/MyWEvORwCz7tHUK8IsNWvom6lr3y9Ac8AAAAAAAAAAAzB5M99gRrutqNlrvju0w4RzTbOoDaKjgAAIA/AACAPwBtOz1Iq66687ZEupVTI7WnFzW65ehgOQAAgD8AAIA/zVw1Ozc6HT7jPYu9gw8/vtHOp702CCe9AAAAAAAAAABmKyQ97PmzudDqhTuVt4g4k4KRuqj2PrkAAIA/AACAP7PODj3h5ou6sIW0O3k3HjixVxm7KCCwtwAAgD8AAIA/LVoRPuQ6Pz96FZW7J4DDvtlTNj0iaiK+AAAAAAAAAABqPpC+CKxJP1wJQ75bodm+OFTGvvvGhT0AAAAAAAAAABq6qb3DnTS6F1tIuM0YcjEk9Gi7mM5pNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzCkBMQkAZECUhpRSlIwBbJRN6AOMAXSUR0CVIuk6Lfk4dX2UKGgGaAloD0MIPbfQlQhIY0CUhpRSlGgVTegDaBZHQJUotH7P6bh1fZQoaAZoCWgPQwhT6pJxDCRlQJSGlFKUaBVN6ANoFkdAlSzVXmvGInV9lChoBmgJaA9DCJT2Bl8YbGJAlIaUUpRoFU3oA2gWR0CVLNuYx+KCdX2UKGgGaAloD0MIA5Xx77NBZ0CUhpRSlGgVTegDaBZHQJUunQWvbGp1fZQoaAZoCWgPQwiu8gTCzjhjQJSGlFKUaBVN6ANoFkdAlTFTfm9xqHV9lChoBmgJaA9DCJdxUwNNW2dAlIaUUpRoFU3oA2gWR0CVMdOhCdBjdX2UKGgGaAloD0MIntMs0O74ZkCUhpRSlGgVTegDaBZHQJU1bpSrHVB1fZQoaAZoCWgPQwh+N92yw7ZhQJSGlFKUaBVN6ANoFkdAlTZdaEBbOnV9lChoBmgJaA9DCHR5c7hWfFNAlIaUUpRoFUvAaBZHQJU5kGqxTsJ1fZQoaAZoCWgPQwj/lZUmJWVnQJSGlFKUaBVN6ANoFkdAlT50mtyPuHV9lChoBmgJaA9DCPZdEfxvW1FAlIaUUpRoFUvdaBZHQJVeQtUXHip1fZQoaAZoCWgPQwifIRyz7OZQQJSGlFKUaBVLx2gWR0CVbBLWqcVhdX2UKGgGaAloD0MIgjtQp7w5Z0CUhpRSlGgVTegDaBZHQJVtNpBX0Xh1fZQoaAZoCWgPQwjFknL3uYdkQJSGlFKUaBVN6ANoFkdAlXBwPy08eXV9lChoBmgJaA9DCLH9ZIwPhWBAlIaUUpRoFU3oA2gWR0CVcNMsH0K7dX2UKGgGaAloD0MIBOJ1/QJZY0CUhpRSlGgVTegDaBZHQJVxGH446wN1fZQoaAZoCWgPQwja/pWVJjdoQJSGlFKUaBVN6ANoFkdAlXnCbx3FDXV9lChoBmgJaA9DCAUWwJSBzlpAlIaUUpRoFU3oA2gWR0CVfSI7eVLSdX2UKGgGaAloD0MIJ/im6bMRZ0CUhpRSlGgVTegDaBZHQJV+fM2WIGh1fZQoaAZoCWgPQwhkldIzvRJnQJSGlFKUaBVN6ANoFkdAlYQJiNKh+XV9lChoBmgJaA9DCBmRKLSszWRAlIaUUpRoFU3oA2gWR0CViD9ugpSadX2UKGgGaAloD0MIjNtoAG+VYkCUhpRSlGgVTegDaBZHQJWIRU3n6mB1fZQoaAZoCWgPQwgQsiyYePxnQJSGlFKUaBVN6ANoFkdAlYzkhFEy+HV9lChoBmgJaA9DCEN1c/E3Z2RAlIaUUpRoFU3oA2gWR0CVjXLwWnCPdX2UKGgGaAloD0MIxAq3fCRpYECUhpRSlGgVTegDaBZHQJWSUVDa4+d1fZQoaAZoCWgPQwi7l/vkKFBCQJSGlFKUaBVL6mgWR0CVksO2RaHLdX2UKGgGaAloD0MIe/Xx0HflZECUhpRSlGgVTegDaBZHQJWVqlKsdT51fZQoaAZoCWgPQwji5elcUc1nQJSGlFKUaBVN6ANoFkdAlZplK02LpHV9lChoBmgJaA9DCHCUvDrHUVNAlIaUUpRoFUvCaBZHQJW8NI+W4Vh1fZQoaAZoCWgPQwhVFoVdlBplQJSGlFKUaBVN6ANoFkdAlcXlfNRm9XV9lChoBmgJaA9DCBqlS/+SH15AlIaUUpRoFU3oA2gWR0CVxuCo0hvBdX2UKGgGaAloD0MIO+C6YsbtYUCUhpRSlGgVTegDaBZHQJXJuY/mknF1fZQoaAZoCWgPQwgQ7PgvkFVjQJSGlFKUaBVN6ANoFkdAlcoMG1QZXXV9lChoBmgJaA9DCKUWSianRmJAlIaUUpRoFU3oA2gWR0CVyk/kNnXedX2UKGgGaAloD0MIEtkHWRZzY0CUhpRSlGgVTegDaBZHQJXSevQnhKl1fZQoaAZoCWgPQwicacL2k7pSQJSGlFKUaBVL02gWR0CV03h4t6HCdX2UKGgGaAloD0MIZcOayqKGYECUhpRSlGgVTegDaBZHQJXVmxwAEMd1fZQoaAZoCWgPQwi8P96rVgBmQJSGlFKUaBVN6ANoFkdAldbdiUgSvnV9lChoBmgJaA9DCE8kmGpmVmVAlIaUUpRoFU3oA2gWR0CV3+gOBlMAdX2UKGgGaAloD0MIAfinVInZXUCUhpRSlGgVTegDaBZHQJXf7T5O8Ch1fZQoaAZoCWgPQwhApUqUPeJiQJSGlFKUaBVN6ANoFkdAleS1OCXhO3V9lChoBmgJaA9DCNJWJZF9tGVAlIaUUpRoFU3oA2gWR0CV5UVVPva2dX2UKGgGaAloD0MIaJYEqKmaY0CUhpRSlGgVTegDaBZHQJXqbcoH9m91fZQoaAZoCWgPQwi45/nTxstgQJSGlFKUaBVN6ANoFkdAlerxcu8K5XV9lChoBmgJaA9DCBnG3SBaOlJAlIaUUpRoFUuraBZHQJXwL+PzWf91fZQoaAZoCWgPQwjLu+oB835jQJSGlFKUaBVN6ANoFkdAlfNlqzqrzXV9lChoBmgJaA9DCNkHWRZMJEhAlIaUUpRoFUvvaBZHQJYV4aya/h51fZQoaAZoCWgPQwhm9KPhlLpkQJSGlFKUaBVN6ANoFkdAlhYwq/dqL3V9lChoBmgJaA9DCIbnpWLj2GRAlIaUUpRoFU3oA2gWR0CWIOY8Md92dX2UKGgGaAloD0MIqrcGtspoYECUhpRSlGgVTegDaBZHQJYlVBX0Xgt1fZQoaAZoCWgPQwjJ5xVPPWFjQJSGlFKUaBVN6ANoFkdAliWqxC6YmnV9lChoBmgJaA9DCNMyUu8pdGhAlIaUUpRoFU3oA2gWR0CWJe4lyBCldX2UKGgGaAloD0MIZVbvcDtFZ0CUhpRSlGgVTegDaBZHQJYumZmZmZp1fZQoaAZoCWgPQwh9XYb/9ANjQJSGlFKUaBVN6ANoFkdAli+RvaURnXV9lChoBmgJaA9DCFvQe2MISl9AlIaUUpRoFU3oA2gWR0CWMdvugHu7dX2UKGgGaAloD0MIwHYwYp84YUCUhpRSlGgVTegDaBZHQJYzKFj/dZd1fZQoaAZoCWgPQwggRgiPNiJkQJSGlFKUaBVN6ANoFkdAljx7lA/s3XV9lChoBmgJaA9DCPKxu0BJcGJAlIaUUpRoFU3oA2gWR0CWPIEFGG21dX2UKGgGaAloD0MIc0wW9x/gZECUhpRSlGgVTegDaBZHQJZBZvaURnR1fZQoaAZoCWgPQwgqqKj6FVNmQJSGlFKUaBVN6ANoFkdAlkdNFa0Qb3V9lChoBmgJaA9DCBnjw+xlAV9AlIaUUpRoFU3oA2gWR0CWTZqSHM2WdX2UKGgGaAloD0MILA5nfjXfZ0CUhpRSlGgVTegDaBZHQJZQ590A93d1fZQoaAZoCWgPQwiLjA5Iwh4aQJSGlFKUaBVL5WgWR0CWVyuEEkjYdX2UKGgGaAloD0MIFkuRfKXHZECUhpRSlGgVTegDaBZHQJZYZ0xM3611fZQoaAZoCWgPQwjxZg3eV2BkQJSGlFKUaBVN6ANoFkdAlli1KkEcKnV9lChoBmgJaA9DCGlVSzrKvmNAlIaUUpRoFU3oA2gWR0CWflL+glF+dX2UKGgGaAloD0MIAI49ey5/YkCUhpRSlGgVTegDaBZHQJaCjg62fCh1fZQoaAZoCWgPQwi0kIDRZXJiQJSGlFKUaBVN6ANoFkdAloLlmWdEs3V9lChoBmgJaA9DCH44SIjyimNAlIaUUpRoFU3oA2gWR0CWgywlSjxkdX2UKGgGaAloD0MI7X2qCo2cY0CUhpRSlGgVTegDaBZHQJaM0ZxaPjp1fZQoaAZoCWgPQwh/wW7YtttfQJSGlFKUaBVN6ANoFkdAlo3rjkuHvnV9lChoBmgJaA9DCMJQhxXuZmRAlIaUUpRoFU3oA2gWR0CWkG2wV0tAdX2UKGgGaAloD0MIgZcZNsrDY0CUhpRSlGgVTegDaBZHQJaRxqGlANZ1fZQoaAZoCWgPQwjOUUfH1c5LQJSGlFKUaBVL6GgWR0CWkkllbu+idX2UKGgGaAloD0MIRKSmXUw/MkCUhpRSlGgVS+VoFkdAlpJqdUbT+nV9lChoBmgJaA9DCL+ZmC5Ee2JAlIaUUpRoFU3oA2gWR0CWm0Q2uPmxdX2UKGgGaAloD0MIfjfdskNaY0CUhpRSlGgVTegDaBZHQJabSS2Yv391fZQoaAZoCWgPQwiifEELCfRgQJSGlFKUaBVN6ANoFkdAlp/4REnb7HV9lChoBmgJaA9DCEGbHD5paWVAlIaUUpRoFU3oA2gWR0CWrJ7gbZOBdX2UKGgGaAloD0MIE5z6QHIhZ0CUhpRSlGgVTegDaBZHQJawY+qzZ6F1fZQoaAZoCWgPQwgkXwmkxA1lQJSGlFKUaBVN6ANoFkdAlrbgd0aIe3V9lChoBmgJaA9DCIkJaviW12NAlIaUUpRoFU3oA2gWR0CWuBuUUwi8dX2UKGgGaAloD0MIxT2WPvQUYkCUhpRSlGgVTegDaBZHQJa4ZydWhh91fZQoaAZoCWgPQwioyCHiZlxkQJSGlFKUaBVN6ANoFkdAlt0DrRjSX3V9lChoBmgJaA9DCEw1s5YCImRAlIaUUpRoFU3oA2gWR0CW4WPLgXMydX2UKGgGaAloD0MIPN154jnrX0CUhpRSlGgVTegDaBZHQJbq5TGYKIB1fZQoaAZoCWgPQwhATpgwmuVmQJSGlFKUaBVN6ANoFkdAluv+iJwbVHV9lChoBmgJaA9DCOvE5XiFKGVAlIaUUpRoFU3oA2gWR0CW7n9FWn0kdX2UKGgGaAloD0MIyQT8Gkk6X0CUhpRSlGgVTegDaBZHQJbv6D9Oymh1fZQoaAZoCWgPQwg02xX6YJxlQJSGlFKUaBVN6ANoFkdAlvBqZ6Uqx3V9lChoBmgJaA9DCH3KMVlcu2JAlIaUUpRoFU3oA2gWR0CW8InQID5kdX2UKGgGaAloD0MIM4gP7Pj3XUCUhpRSlGgVTegDaBZHQJb5FTaTOgR1fZQoaAZoCWgPQwgiVKnZA2JlQJSGlFKUaBVN6ANoFkdAlvkbHp8neHV9lChoBmgJaA9DCABYHTlSDWRAlIaUUpRoFU3oA2gWR0CW/WJVKf4AdX2UKGgGaAloD0MIDaoNTkScZUCUhpRSlGgVTegDaBZHQJcI3yFwkxB1fZQoaAZoCWgPQwgJxOv6BX9kQJSGlFKUaBVN6ANoFkdAlwxCM5wOv3V9lChoBmgJaA9DCEKvP4lPYGJAlIaUUpRoFU3oA2gWR0CXElQ1rIo3dX2UKGgGaAloD0MIxxLWxli1ZECUhpRSlGgVTegDaBZHQJcTcXm/3391fZQoaAZoCWgPQwhiaHVyhtZeQJSGlFKUaBVN6ANoFkdAlxO5QP7N0XVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fad3f58945c243b69a985cb6cc3f23fde417d4b8ceec67eb29c154434a6e554d
|
3 |
+
size 144037
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -47,7 +47,7 @@
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -69,21 +69,21 @@
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
-
"n_steps":
|
80 |
-
"gamma": 0.
|
81 |
-
"gae_lambda": 0.
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f1e54397950>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f1e543979e0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f1e54397a70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f1e54397b00>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f1e54397b90>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f1e54397c20>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f1e54397cb0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f1e54397d40>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f1e54397dd0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f1e54397e60>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f1e54397ef0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f1e543e49f0>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652058653.117655,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANpSHz6UAYE/xpUaPZlh2r7oIzQ+prB6vQAAAAAAAAAAzYKMPB/Fp7k9GHA6fIjLNQtQcDvEvoy5AACAPwAAgD/z39A99kwputCv4bq//ka2u7yCOeUUAjoAAIA/AACAPxo0gT241v+5qAV8OuLL0TTXXi+69n+RuQAAgD8AAIA/mjE5vOG0gboiqOE6EdsNNffRZruv5AK6AACAPwAAgD+zQ049haOquT3jZrrzu0+1xQCrOSLxhTkAAIA/AACAP3NrzD3DBS26vO6OufyiFrUrKYM7elamOAAAgD8AAIA/MyWEvORwCz7tHUK8IsNWvom6lr3y9Ac8AAAAAAAAAAAzB5M99gRrutqNlrvju0w4RzTbOoDaKjgAAIA/AACAPwBtOz1Iq66687ZEupVTI7WnFzW65ehgOQAAgD8AAIA/zVw1Ozc6HT7jPYu9gw8/vtHOp702CCe9AAAAAAAAAABmKyQ97PmzudDqhTuVt4g4k4KRuqj2PrkAAIA/AACAP7PODj3h5ou6sIW0O3k3HjixVxm7KCCwtwAAgD8AAIA/LVoRPuQ6Pz96FZW7J4DDvtlTNj0iaiK+AAAAAAAAAABqPpC+CKxJP1wJQ75bodm+OFTGvvvGhT0AAAAAAAAAABq6qb3DnTS6F1tIuM0YcjEk9Gi7mM5pNwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
69 |
"_current_progress_remaining": -0.015808000000000044,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIzCkBMQkAZECUhpRSlIwBbJRN6AOMAXSUR0CVIuk6Lfk4dX2UKGgGaAloD0MIPbfQlQhIY0CUhpRSlGgVTegDaBZHQJUotH7P6bh1fZQoaAZoCWgPQwhT6pJxDCRlQJSGlFKUaBVN6ANoFkdAlSzVXmvGInV9lChoBmgJaA9DCJT2Bl8YbGJAlIaUUpRoFU3oA2gWR0CVLNuYx+KCdX2UKGgGaAloD0MIA5Xx77NBZ0CUhpRSlGgVTegDaBZHQJUunQWvbGp1fZQoaAZoCWgPQwiu8gTCzjhjQJSGlFKUaBVN6ANoFkdAlTFTfm9xqHV9lChoBmgJaA9DCJdxUwNNW2dAlIaUUpRoFU3oA2gWR0CVMdOhCdBjdX2UKGgGaAloD0MIntMs0O74ZkCUhpRSlGgVTegDaBZHQJU1bpSrHVB1fZQoaAZoCWgPQwh+N92yw7ZhQJSGlFKUaBVN6ANoFkdAlTZdaEBbOnV9lChoBmgJaA9DCHR5c7hWfFNAlIaUUpRoFUvAaBZHQJU5kGqxTsJ1fZQoaAZoCWgPQwj/lZUmJWVnQJSGlFKUaBVN6ANoFkdAlT50mtyPuHV9lChoBmgJaA9DCPZdEfxvW1FAlIaUUpRoFUvdaBZHQJVeQtUXHip1fZQoaAZoCWgPQwifIRyz7OZQQJSGlFKUaBVLx2gWR0CVbBLWqcVhdX2UKGgGaAloD0MIgjtQp7w5Z0CUhpRSlGgVTegDaBZHQJVtNpBX0Xh1fZQoaAZoCWgPQwjFknL3uYdkQJSGlFKUaBVN6ANoFkdAlXBwPy08eXV9lChoBmgJaA9DCLH9ZIwPhWBAlIaUUpRoFU3oA2gWR0CVcNMsH0K7dX2UKGgGaAloD0MIBOJ1/QJZY0CUhpRSlGgVTegDaBZHQJVxGH446wN1fZQoaAZoCWgPQwja/pWVJjdoQJSGlFKUaBVN6ANoFkdAlXnCbx3FDXV9lChoBmgJaA9DCAUWwJSBzlpAlIaUUpRoFU3oA2gWR0CVfSI7eVLSdX2UKGgGaAloD0MIJ/im6bMRZ0CUhpRSlGgVTegDaBZHQJV+fM2WIGh1fZQoaAZoCWgPQwhkldIzvRJnQJSGlFKUaBVN6ANoFkdAlYQJiNKh+XV9lChoBmgJaA9DCBmRKLSszWRAlIaUUpRoFU3oA2gWR0CViD9ugpSadX2UKGgGaAloD0MIjNtoAG+VYkCUhpRSlGgVTegDaBZHQJWIRU3n6mB1fZQoaAZoCWgPQwgQsiyYePxnQJSGlFKUaBVN6ANoFkdAlYzkhFEy+HV9lChoBmgJaA9DCEN1c/E3Z2RAlIaUUpRoFU3oA2gWR0CVjXLwWnCPdX2UKGgGaAloD0MIxAq3fCRpYECUhpRSlGgVTegDaBZHQJWSUVDa4+d1fZQoaAZoCWgPQwi7l/vkKFBCQJSGlFKUaBVL6mgWR0CVksO2RaHLdX2UKGgGaAloD0MIe/Xx0HflZECUhpRSlGgVTegDaBZHQJWVqlKsdT51fZQoaAZoCWgPQwji5elcUc1nQJSGlFKUaBVN6ANoFkdAlZplK02LpHV9lChoBmgJaA9DCHCUvDrHUVNAlIaUUpRoFUvCaBZHQJW8NI+W4Vh1fZQoaAZoCWgPQwhVFoVdlBplQJSGlFKUaBVN6ANoFkdAlcXlfNRm9XV9lChoBmgJaA9DCBqlS/+SH15AlIaUUpRoFU3oA2gWR0CVxuCo0hvBdX2UKGgGaAloD0MIO+C6YsbtYUCUhpRSlGgVTegDaBZHQJXJuY/mknF1fZQoaAZoCWgPQwgQ7PgvkFVjQJSGlFKUaBVN6ANoFkdAlcoMG1QZXXV9lChoBmgJaA9DCKUWSianRmJAlIaUUpRoFU3oA2gWR0CVyk/kNnXedX2UKGgGaAloD0MIEtkHWRZzY0CUhpRSlGgVTegDaBZHQJXSevQnhKl1fZQoaAZoCWgPQwicacL2k7pSQJSGlFKUaBVL02gWR0CV03h4t6HCdX2UKGgGaAloD0MIZcOayqKGYECUhpRSlGgVTegDaBZHQJXVmxwAEMd1fZQoaAZoCWgPQwi8P96rVgBmQJSGlFKUaBVN6ANoFkdAldbdiUgSvnV9lChoBmgJaA9DCE8kmGpmVmVAlIaUUpRoFU3oA2gWR0CV3+gOBlMAdX2UKGgGaAloD0MIAfinVInZXUCUhpRSlGgVTegDaBZHQJXf7T5O8Ch1fZQoaAZoCWgPQwhApUqUPeJiQJSGlFKUaBVN6ANoFkdAleS1OCXhO3V9lChoBmgJaA9DCNJWJZF9tGVAlIaUUpRoFU3oA2gWR0CV5UVVPva2dX2UKGgGaAloD0MIaJYEqKmaY0CUhpRSlGgVTegDaBZHQJXqbcoH9m91fZQoaAZoCWgPQwi45/nTxstgQJSGlFKUaBVN6ANoFkdAlerxcu8K5XV9lChoBmgJaA9DCBnG3SBaOlJAlIaUUpRoFUuraBZHQJXwL+PzWf91fZQoaAZoCWgPQwjLu+oB835jQJSGlFKUaBVN6ANoFkdAlfNlqzqrzXV9lChoBmgJaA9DCNkHWRZMJEhAlIaUUpRoFUvvaBZHQJYV4aya/h51fZQoaAZoCWgPQwhm9KPhlLpkQJSGlFKUaBVN6ANoFkdAlhYwq/dqL3V9lChoBmgJaA9DCIbnpWLj2GRAlIaUUpRoFU3oA2gWR0CWIOY8Md92dX2UKGgGaAloD0MIqrcGtspoYECUhpRSlGgVTegDaBZHQJYlVBX0Xgt1fZQoaAZoCWgPQwjJ5xVPPWFjQJSGlFKUaBVN6ANoFkdAliWqxC6YmnV9lChoBmgJaA9DCNMyUu8pdGhAlIaUUpRoFU3oA2gWR0CWJe4lyBCldX2UKGgGaAloD0MIZVbvcDtFZ0CUhpRSlGgVTegDaBZHQJYumZmZmZp1fZQoaAZoCWgPQwh9XYb/9ANjQJSGlFKUaBVN6ANoFkdAli+RvaURnXV9lChoBmgJaA9DCFvQe2MISl9AlIaUUpRoFU3oA2gWR0CWMdvugHu7dX2UKGgGaAloD0MIwHYwYp84YUCUhpRSlGgVTegDaBZHQJYzKFj/dZd1fZQoaAZoCWgPQwggRgiPNiJkQJSGlFKUaBVN6ANoFkdAljx7lA/s3XV9lChoBmgJaA9DCPKxu0BJcGJAlIaUUpRoFU3oA2gWR0CWPIEFGG21dX2UKGgGaAloD0MIc0wW9x/gZECUhpRSlGgVTegDaBZHQJZBZvaURnR1fZQoaAZoCWgPQwgqqKj6FVNmQJSGlFKUaBVN6ANoFkdAlkdNFa0Qb3V9lChoBmgJaA9DCBnjw+xlAV9AlIaUUpRoFU3oA2gWR0CWTZqSHM2WdX2UKGgGaAloD0MILA5nfjXfZ0CUhpRSlGgVTegDaBZHQJZQ590A93d1fZQoaAZoCWgPQwiLjA5Iwh4aQJSGlFKUaBVL5WgWR0CWVyuEEkjYdX2UKGgGaAloD0MIFkuRfKXHZECUhpRSlGgVTegDaBZHQJZYZ0xM3611fZQoaAZoCWgPQwjxZg3eV2BkQJSGlFKUaBVN6ANoFkdAlli1KkEcKnV9lChoBmgJaA9DCGlVSzrKvmNAlIaUUpRoFU3oA2gWR0CWflL+glF+dX2UKGgGaAloD0MIAI49ey5/YkCUhpRSlGgVTegDaBZHQJaCjg62fCh1fZQoaAZoCWgPQwi0kIDRZXJiQJSGlFKUaBVN6ANoFkdAloLlmWdEs3V9lChoBmgJaA9DCH44SIjyimNAlIaUUpRoFU3oA2gWR0CWgywlSjxkdX2UKGgGaAloD0MI7X2qCo2cY0CUhpRSlGgVTegDaBZHQJaM0ZxaPjp1fZQoaAZoCWgPQwh/wW7YtttfQJSGlFKUaBVN6ANoFkdAlo3rjkuHvnV9lChoBmgJaA9DCMJQhxXuZmRAlIaUUpRoFU3oA2gWR0CWkG2wV0tAdX2UKGgGaAloD0MIgZcZNsrDY0CUhpRSlGgVTegDaBZHQJaRxqGlANZ1fZQoaAZoCWgPQwjOUUfH1c5LQJSGlFKUaBVL6GgWR0CWkkllbu+idX2UKGgGaAloD0MIRKSmXUw/MkCUhpRSlGgVS+VoFkdAlpJqdUbT+nV9lChoBmgJaA9DCL+ZmC5Ee2JAlIaUUpRoFU3oA2gWR0CWm0Q2uPmxdX2UKGgGaAloD0MIfjfdskNaY0CUhpRSlGgVTegDaBZHQJabSS2Yv391fZQoaAZoCWgPQwiifEELCfRgQJSGlFKUaBVN6ANoFkdAlp/4REnb7HV9lChoBmgJaA9DCEGbHD5paWVAlIaUUpRoFU3oA2gWR0CWrJ7gbZOBdX2UKGgGaAloD0MIE5z6QHIhZ0CUhpRSlGgVTegDaBZHQJawY+qzZ6F1fZQoaAZoCWgPQwgkXwmkxA1lQJSGlFKUaBVN6ANoFkdAlrbgd0aIe3V9lChoBmgJaA9DCIkJaviW12NAlIaUUpRoFU3oA2gWR0CWuBuUUwi8dX2UKGgGaAloD0MIxT2WPvQUYkCUhpRSlGgVTegDaBZHQJa4ZydWhh91fZQoaAZoCWgPQwioyCHiZlxkQJSGlFKUaBVN6ANoFkdAlt0DrRjSX3V9lChoBmgJaA9DCEw1s5YCImRAlIaUUpRoFU3oA2gWR0CW4WPLgXMydX2UKGgGaAloD0MIPN154jnrX0CUhpRSlGgVTegDaBZHQJbq5TGYKIB1fZQoaAZoCWgPQwhATpgwmuVmQJSGlFKUaBVN6ANoFkdAluv+iJwbVHV9lChoBmgJaA9DCOvE5XiFKGVAlIaUUpRoFU3oA2gWR0CW7n9FWn0kdX2UKGgGaAloD0MIyQT8Gkk6X0CUhpRSlGgVTegDaBZHQJbv6D9Oymh1fZQoaAZoCWgPQwg02xX6YJxlQJSGlFKUaBVN6ANoFkdAlvBqZ6Uqx3V9lChoBmgJaA9DCH3KMVlcu2JAlIaUUpRoFU3oA2gWR0CW8InQID5kdX2UKGgGaAloD0MIM4gP7Pj3XUCUhpRSlGgVTegDaBZHQJb5FTaTOgR1fZQoaAZoCWgPQwgiVKnZA2JlQJSGlFKUaBVN6ANoFkdAlvkbHp8neHV9lChoBmgJaA9DCABYHTlSDWRAlIaUUpRoFU3oA2gWR0CW/WJVKf4AdX2UKGgGaAloD0MIDaoNTkScZUCUhpRSlGgVTegDaBZHQJcI3yFwkxB1fZQoaAZoCWgPQwgJxOv6BX9kQJSGlFKUaBVN6ANoFkdAlwxCM5wOv3V9lChoBmgJaA9DCEKvP4lPYGJAlIaUUpRoFU3oA2gWR0CXElQ1rIo3dX2UKGgGaAloD0MIxxLWxli1ZECUhpRSlGgVTegDaBZHQJcTcXm/3391fZQoaAZoCWgPQwhiaHVyhtZeQJSGlFKUaBVN6ANoFkdAlxO5QP7N0XVlLg=="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a93fe477317e5376df712c538ecc5eea4d90d338b1d9515965169b7c7260d56
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5c20a1728ae3cd40838b5e271784121c4e526a8bd7df8719a030e594589d5493
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e0a8e4c6c001a167d9032af103cd264a63d20ec21d299a28b4bcfabd98cb47c
|
3 |
+
size 216259
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 250.6255481534265, "std_reward": 21.43922073955433, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T01:47:20.825741"}
|