--- license: apache-2.0 --- ## Deprem Niyet Sınıflandırma (Dataset v1.3, BERT 128k) Alakasız sınıfı atılarak eğitildi. ## Eval Results ``` precision recall f1-score support Lojistik 0.83 0.86 0.84 22 Elektrik Kaynagi 0.71 0.95 0.81 39 Arama Ekipmani 0.72 0.80 0.76 82 Cenaze 0.50 0.33 0.40 3 Giysi 0.79 0.96 0.87 91 Enkaz Kaldirma 0.99 0.95 0.97 601 Isinma 0.75 0.90 0.82 112 Barınma 0.98 0.95 0.96 292 Tuvalet 0.83 1.00 0.91 5 Su 0.80 0.85 0.83 39 Yemek 0.94 0.95 0.94 138 Saglik 0.80 0.85 0.83 75 micro avg 0.90 0.93 0.92 1499 macro avg 0.80 0.86 0.83 1499 weighted avg 0.91 0.93 0.92 1499 samples avg 0.94 0.95 0.94 1499 ``` Reproducibility icin trainer arg'lari: ```python TrainingArguments( fp16=True, evaluation_strategy = "steps", save_strategy = "steps", learning_rate=5.1058553791201954e-05, per_device_train_batch_size=batch_size, per_device_eval_batch_size=batch_size*2, num_train_epochs=4, load_best_model_at_end=True, metric_for_best_model="macro f1", logging_steps = step_size, seed = 42, data_seed = 42, dataloader_num_workers = 0, lr_scheduler_type ="linear", warmup_steps=0, weight_decay=0.06437697487126866, full_determinism = True, group_by_length = True ) ``` Threshold: Best Threshold: 0.52