File size: 2,623 Bytes
3d780b5 dd59a31 3d780b5 dd59a31 3d780b5 dd59a31 3d780b5 dd59a31 3d780b5 dd59a31 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: other
license_name: glm-4
license_link: https://huggingface.co/THUDM/glm-4-9b-chat/blob/main/LICENSE
language:
- en
- zh
library_name: transformers
pipeline_tag: text-generation
base_model: THUDM/glm-4-9b-chat
tags:
- Mental Health
- Chatbot
- LLM
- llama-factory
- EMOLLM
---
# Update
**The model is now following the update from GLM-4-9B-Chat and now requires `transformers>=4.44.0`. Please update your dependencies accordingly.**
**Also follow the [dependencies](https://github.com/THUDM/GLM-4/blob/main/basic_demo/requirements.txt) it before using**
# Introduction
This model is [GLM-4-9B-Chat](https://huggingface.co/THUDM/glm-4-9b-chat/tree/main), fine-tuned with various datasets to focus on mental health care.
Since it is fine-tuned with a Chinese dataset, please use it in Chinese, even though the base model supports English text.
# Dataset
- [Smile dataset](https://github.com/qiuhuachuan/smile)
- [SoulChat](https://github.com/scutcyr/SoulChat)
- [single_turn_dataset_1 from EMOLLM](https://github.com/SmartFlowAI/EmoLLM/blob/main/datasets/single_turn_dataset_1.json)
- [self-defined role-playing dataset]
# Training
Using LLaMA-Factory to do the fine-tuning process. Here are the parameters:
(TODO)
# Use the following method to quickly call the GLM-4-9B-Chat language model
Use the transformers backend for inference:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("derek33125/project-angel-chatglm4", trust_remote_code=True)
query = "我感到很悲伤"
inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"derek33125/project-angel-chatglm4",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
It also supports [VLLM](https://github.com/THUDM/GLM-4/blob/main/basic_demo/openai_api_server.py) and [LangChain](https://python.langchain.com/v0.2/docs/integrations/llms/huggingface_pipelines/) . |