PhilipMay commited on
Commit
11264f3
·
1 Parent(s): c072ba6

add Evaluation

Browse files
Files changed (1) hide show
  1. README.md +12 -11
README.md CHANGED
@@ -8,8 +8,6 @@ tags:
8
  - transformers
9
  - setfit
10
  license: mit
11
- metrics:
12
- - cosine similarity
13
  datasets:
14
  - deutsche-telekom/ger-backtrans-paraphrase
15
 
@@ -21,19 +19,22 @@ It maps sentences & paragraphs (text) into a 1024 dimensional dense vector space
21
  The model is intended to be used together with [SetFit](https://github.com/huggingface/setfit)
22
  to improve German few-shot text classification.
23
 
24
- ## Evaluation Results
25
- TODO
26
 
27
  ## Training
28
  TODO
29
 
30
- ## Full Model Architecture
31
- ```
32
- SentenceTransformer(
33
- (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
34
- (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
35
- )
36
- ```
 
 
 
37
 
38
  ## Licensing
39
  Copyright (c) 2023 [Philip May](https://may.la/), [Deutsche Telekom AG](https://www.telekom.com/)\
 
8
  - transformers
9
  - setfit
10
  license: mit
 
 
11
  datasets:
12
  - deutsche-telekom/ger-backtrans-paraphrase
13
 
 
19
  The model is intended to be used together with [SetFit](https://github.com/huggingface/setfit)
20
  to improve German few-shot text classification.
21
 
22
+ This model is based on [deepset/gbert-large](https://huggingface.co/deepset/gbert-large).
23
+ Many thanks to [deepset](https://www.deepset.ai/)!
24
 
25
  ## Training
26
  TODO
27
 
28
+ ## Evaluation Results
29
+ We use the [NLU Few-shot Benchmark - English and German](https://huggingface.co/datasets/deutsche-telekom/NLU-few-shot-benchmark-en-de)
30
+ dataset to evaluate this model in a German few-shot scenario.
31
+
32
+ **Qualitative results**\
33
+ - multilingual sentence embeddings provide the worst results
34
+ - Electra models also deliver poor results
35
+ - German BERT base size model ([deepset/gbert-base](https://huggingface.co/deepset/gbert-base)) provides good results
36
+ - German BERT large size model ([deepset/gbert-large](https://huggingface.co/deepset/gbert-large)) provides very good results
37
+ - our fine-tuned models (this model and [deutsche-telekom/gbert-large-paraphrase-euclidean](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-euclidean)) provide best results
38
 
39
  ## Licensing
40
  Copyright (c) 2023 [Philip May](https://may.la/), [Deutsche Telekom AG](https://www.telekom.com/)\