--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - arrow metrics: - accuracy model-index: - name: my_awesome_food_model results: - task: name: Image Classification type: image-classification dataset: name: arrow type: arrow config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.0 --- # my_awesome_food_model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the arrow dataset. It achieves the following results on the evaluation set: - Loss: 5.4500 - Accuracy: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 2.0443 | 0.9951 | 152 | 5.0073 | 0.0 | | 1.1305 | 1.9967 | 305 | 5.3222 | 0.0 | | 0.9782 | 2.9853 | 456 | 5.4500 | 0.0 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.3.1 - Datasets 2.21.0 - Tokenizers 0.19.1