--- library_name: transformers license: apache-2.0 base_model: openai/whisper-base tags: - generated_from_trainer metrics: - wer model-index: - name: whisper-base-akan results: [] --- # whisper-base-akan This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.0030 - Wer: 41.5869 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 2000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.2883 | 5.0 | 250 | 0.7379 | 70.2488 | | 0.0873 | 10.0 | 500 | 0.8617 | 49.6246 | | 0.0373 | 15.0 | 750 | 0.9027 | 47.4165 | | 0.0204 | 20.0 | 1000 | 0.9374 | 44.5017 | | 0.0078 | 25.0 | 1250 | 0.9861 | 44.0601 | | 0.0014 | 30.0 | 1500 | 0.9873 | 42.1758 | | 0.0003 | 35.0 | 1750 | 0.9982 | 41.4544 | | 0.0003 | 40.0 | 2000 | 1.0030 | 41.5869 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.1