First version
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 211.11 +/- 22.82
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe176320710>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1763207a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe176320830>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1763208c0>", "_build": "<function ActorCriticPolicy._build at 0x7fe176320950>", "forward": "<function ActorCriticPolicy.forward at 0x7fe1763209e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe176320a70>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe176320b00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe176320b90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe176320c20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe176320cb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe176367930>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651841089.1668882, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0kD7voK1Y/+ioZvgqIl762xSQ9JcZmvQAAAAAAAAAAA+myvtISmjzywla79HUnOfXZmr1Fjns6AACAPwAAgD+z7jE9UliYODcCBrugjlM7lxISOqAN0rsAAAAAAAAAAA2G570U2pa6pTkYuZFHSDO74Pi6+BItOAAAgD8AAIA/7QqWvujRyby+YDo7DH+ZObM1MT5DpmS6AACAPwAAgD/zx6W9ZHJQPn2Igb4t0S2+VlqWvbqjWb4AAAAAAAAAANplkL3sgZW5dTZiu1oxXzd9FIG7AMfQtgAAgD8AAIA/mnL1vBQ4iroBGae7kUSNtSUPGbo6CPg0AACAPwAAgD/4Q7m+JPLFvVoxirvDRSG6NInIPhyYDLsAAIA/AACAP2ZW2LuP6me61rDAupEVNLXguXa77rbgOQAAgD8AAIA/mtg0Pbh26rn1KXS6MWeNtZJqGDqt3ow5AACAPwAAgD+aOIk84QyNui4E3rsLkJw1RAICubkUDLUAAIA/AACAP+M0Ur7DAH28XjFfO0Uhhjlnm+U9QouJugAAgD8AAIA/DQ5mvog27LxyPhW9jX2Pu3brUj7mslk8AACAPwAAgD+gvji+9lRXvMGhPb3+BoG7LHG/PegaUjwAAIA/AACAP40anb249qy5fueROndiPTTKJ8y6GaCruQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkMAffv58W0CUhpRSlIwBbJRN6AOMAXSUR0CCSuaVlf7adX2UKGgGaAloD0MIrKsCtRj8CsCUhpRSlGgVS/5oFkdAgmKsNDtw73V9lChoBmgJaA9DCLa+SGjLeTBAlIaUUpRoFUvsaBZHQIJiyMcZLqV1fZQoaAZoCWgPQwh5rYTuki9hQJSGlFKUaBVN6ANoFkdAgmi89fTkQ3V9lChoBmgJaA9DCHwKgPEMh1pAlIaUUpRoFU3oA2gWR0CCgDkjHGS7dX2UKGgGaAloD0MIPUfku5Q4X0CUhpRSlGgVTegDaBZHQIKOOvr4WUN1fZQoaAZoCWgPQwivJk9ZTVNaQJSGlFKUaBVN6ANoFkdAgo5qIrOJL3V9lChoBmgJaA9DCPThWYKMME7AlIaUUpRoFUvUaBZHQILS+eWfK6p1fZQoaAZoCWgPQwjRWtHmOL5SQJSGlFKUaBVN6ANoFkdAgtMTVDrquHV9lChoBmgJaA9DCIyDS8ecTznAlIaUUpRoFU0LAWgWR0CC1qM+eOGTdX2UKGgGaAloD0MIP6cgPxtfY0CUhpRSlGgVTegDaBZHQILaaCBf8dh1fZQoaAZoCWgPQwhpxqLp7K9kQJSGlFKUaBVN6ANoFkdAgwOzoEB8yHV9lChoBmgJaA9DCODYs+cycFdAlIaUUpRoFU3oA2gWR0CDCALG7z06dX2UKGgGaAloD0MI5bm+DwctXkCUhpRSlGgVTegDaBZHQIMYd4FA3UB1fZQoaAZoCWgPQwgcKPBOPgJaQJSGlFKUaBVNAwJoFkdAgx+iUornT3V9lChoBmgJaA9DCFcJFoczZlNAlIaUUpRoFU3oA2gWR0CDIpgG8mKJdX2UKGgGaAloD0MI8GskCcJSUUCUhpRSlGgVTegDaBZHQIMizQAuIyl1fZQoaAZoCWgPQwibG9MTlsxVQJSGlFKUaBVN6ANoFkdAgynSgGr0a3V9lChoBmgJaA9DCCKOdXEbBl5AlIaUUpRoFU3oA2gWR0CDK5WtlqagdX2UKGgGaAloD0MI36XUJeNYOECUhpRSlGgVS+ZoFkdAgzDo1k1/D3V9lChoBmgJaA9DCFkWTPzRGWFAlIaUUpRoFU3oA2gWR0CDPIypJf6XdX2UKGgGaAloD0MIg1K0ci+cMECUhpRSlGgVS+ZoFkdAgz18/MW43HV9lChoBmgJaA9DCHaIf9jSHUPAlIaUUpRoFUv4aBZHQINJCmO2iL51fZQoaAZoCWgPQwg+eO3Shj9bQJSGlFKUaBVN6ANoFkdAg1P/V7Qb/HV9lChoBmgJaA9DCPxwkBDlAy7AlIaUUpRoFUvdaBZHQINyEhaC+UR1fZQoaAZoCWgPQwge/wWCAJReQJSGlFKUaBVN6ANoFkdAg4Ee10DEFXV9lChoBmgJaA9DCGXiVkEM2l5AlIaUUpRoFU3oA2gWR0CDgU8xKxs3dX2UKGgGaAloD0MIMjhKXp3LWkCUhpRSlGgVTegDaBZHQIOEa0fHPu51fZQoaAZoCWgPQwhM++b+6upkQJSGlFKUaBVN6ANoFkdAg4SC7btZ3nV9lChoBmgJaA9DCHSYLy/AeVtAlIaUUpRoFU3oA2gWR0CDyt8WsRxtdX2UKGgGaAloD0MIyM9GrptFZUCUhpRSlGgVTegDaBZHQIPOWdiDujR1fZQoaAZoCWgPQwiH+l3YGr9hQJSGlFKUaBVN6ANoFkdAg/XvcrRSg3V9lChoBmgJaA9DCF0yjpFs/mJAlIaUUpRoFU3oA2gWR0CEExv863iJdX2UKGgGaAloD0MIcJo+O+BtYUCUhpRSlGgVTegDaBZHQIQWUdzXBgx1fZQoaAZoCWgPQwhSCyWT07dhQJSGlFKUaBVN6ANoFkdAhB62hqTKT3V9lChoBmgJaA9DCG6Kx0W1O1xAlIaUUpRoFU3oA2gWR0CEIO1XNke7dX2UKGgGaAloD0MIfQOTG8WJYUCUhpRSlGgVTegDaBZHQIQnKpaRp111fZQoaAZoCWgPQwg4MLlRZPU0wJSGlFKUaBVNFAFoFkdAhCsjh99c8nV9lChoBmgJaA9DCOwvuycPY19AlIaUUpRoFU3oA2gWR0CEM5KTSsr/dX2UKGgGaAloD0MIlpaRek/JUECUhpRSlGgVTegDaBZHQIQ0qM3qAz51fZQoaAZoCWgPQwiWBRN/FCEwQJSGlFKUaBVNEAFoFkdAhEMBouf29XV9lChoBmgJaA9DCFeYvtcQrCpAlIaUUpRoFUu+aBZHQIRE0vkBCD51fZQoaAZoCWgPQwgd5ssLsHtfQJSGlFKUaBVN6ANoFkdAhEmcf3evZHV9lChoBmgJaA9DCCDtf4C1x11AlIaUUpRoFU3oA2gWR0CEZFvze40/dX2UKGgGaAloD0MIc0wW9x/hWkCUhpRSlGgVTegDaBZHQIRx7h99c8l1fZQoaAZoCWgPQwiLVBhbiGlgQJSGlFKUaBVN6ANoFkdAhHIhwVCXyHV9lChoBmgJaA9DCBzuI7cm0F1AlIaUUpRoFU3oA2gWR0CEdSB8x9G7dX2UKGgGaAloD0MIforjwCtkYkCUhpRSlGgVTegDaBZHQIR1N2Pkq+d1fZQoaAZoCWgPQwjuXBjpRR1YQJSGlFKUaBVN6ANoFkdAhHiQaisXBXV9lChoBmgJaA9DCHMTtTQ3LmBAlIaUUpRoFU3oA2gWR0CEv4jQiRnwdX2UKGgGaAloD0MIby2T4XjSMUCUhpRSlGgVTRIBaBZHQITk56yB06p1fZQoaAZoCWgPQwiq9BPO7vlgQJSGlFKUaBVN6ANoFkdAhQRL127nPnV9lChoBmgJaA9DCFw8vOdAPmVAlIaUUpRoFU3oA2gWR0CFESqYqoZRdX2UKGgGaAloD0MID0bsE8AVYECUhpRSlGgVTegDaBZHQIUTtBlcyFh1fZQoaAZoCWgPQwisqpffaShfQJSGlFKUaBVN6ANoFkdAhR/e2VmjCnV9lChoBmgJaA9DCMf0hCUejFdAlIaUUpRoFU3oA2gWR0CFKlUdaMaTdX2UKGgGaAloD0MIQ1n4+lo4VkCUhpRSlGgVTegDaBZHQIUrlonKGL11fZQoaAZoCWgPQwivldBdEpddQJSGlFKUaBVN6ANoFkdAhTw0knkT6HV9lChoBmgJaA9DCNeKNse5yF9AlIaUUpRoFU3oA2gWR0CFPhpB5X2edX2UKGgGaAloD0MIU8xB0NGVW0CUhpRSlGgVTegDaBZHQIVDAku6ErZ1fZQoaAZoCWgPQwiUMT7MXtVdQJSGlFKUaBVN6ANoFkdAhV68oYvWYnV9lChoBmgJaA9DCEuRfCWQ619AlIaUUpRoFU3oA2gWR0CFbGgjhUBGdX2UKGgGaAloD0MISOF6FK6eZECUhpRSlGgVTegDaBZHQIVsmHDaXa91fZQoaAZoCWgPQwga3xeXqm9eQJSGlFKUaBVN6ANoFkdAhW+s1KoQ4HV9lChoBmgJaA9DCP3c0JQdZ2BAlIaUUpRoFU3oA2gWR0CFc5aURnOCdX2UKGgGaAloD0MI78ftl89HY0CUhpRSlGgVTegDaBZHQIV3gw/PgNx1fZQoaAZoCWgPQwjsa11qhAYnQJSGlFKUaBVL0WgWR0CF0d/EwWWQdX2UKGgGaAloD0MI0VlmEYr5WUCUhpRSlGgVTegDaBZHQIXg6ArhBJJ1fZQoaAZoCWgPQwjJ5NTOMDUjwJSGlFKUaBVNHwFoFkdAhewF0gbIcXV9lChoBmgJaA9DCB8tzhjmblxAlIaUUpRoFU3oA2gWR0CF/qNHYpUhdX2UKGgGaAloD0MIS4+merJJYkCUhpRSlGgVTegDaBZHQIYJ+UB4lhR1fZQoaAZoCWgPQwiNJhdjYMUnwJSGlFKUaBVNLAFoFkdAhgr0z0pVj3V9lChoBmgJaA9DCDkJpS+Ecl1AlIaUUpRoFU3oA2gWR0CGDCtJ4B3idX2UKGgGaAloD0MIwjHLngTgYECUhpRSlGgVTegDaBZHQIYWt/OMVDd1fZQoaAZoCWgPQwia7nVS37BjQJSGlFKUaBVN6ANoFkdAhh/LrxAjZHV9lChoBmgJaA9DCOhpwCDpX1pAlIaUUpRoFU3oA2gWR0CGION8VpK0dX2UKGgGaAloD0MIPiMRGsFgXkCUhpRSlGgVTegDaBZHQIYw5V81Gb11fZQoaAZoCWgPQwjovpzZrp5WQJSGlFKUaBVN6ANoFkdAhjK6zmfXgHV9lChoBmgJaA9DCOYF2Een6mJAlIaUUpRoFU3oA2gWR0CGN4l8gIQfdX2UKGgGaAloD0MIBRTq6SN0ZECUhpRSlGgVTegDaBZHQIZQb8WKuSx1fZQoaAZoCWgPQwgCKhxBKsxfQJSGlFKUaBVN6ANoFkdAhlzSeAd4mnV9lChoBmgJaA9DCOviNhrAE1dAlIaUUpRoFU3oA2gWR0CGX69ovi97dX2UKGgGaAloD0MIVfoJZzdYYECUhpRSlGgVTegDaBZHQIZjUKPXCj11fZQoaAZoCWgPQwiCHJQw044rQJSGlFKUaBVNCwFoFkdAhtAsZxaPjnV9lChoBmgJaA9DCI1jJHuED1pAlIaUUpRoFU3oA2gWR0CG1O02tMfzdX2UKGgGaAloD0MI5UF6ihxaKkCUhpRSlGgVTRwBaBZHQIbXagCfYjB1fZQoaAZoCWgPQwhC6KBLONpaQJSGlFKUaBVN6ANoFkdAhuGcXvYvnXV9lChoBmgJaA9DCDikUYGTyVBAlIaUUpRoFU3oA2gWR0CG8sgmJFb3dX2UKGgGaAloD0MIu16aIkCtYUCUhpRSlGgVTegDaBZHQIb+AnKGL1p1fZQoaAZoCWgPQwi+pZwvdoRgQJSGlFKUaBVN6ANoFkdAhv76jN6gNHV9lChoBmgJaA9DCJbtQ95yC1pAlIaUUpRoFU3oA2gWR0CHAC0fozN2dX2UKGgGaAloD0MIdEaU9gaxX0CUhpRSlGgVTegDaBZHQIcKUQRPGhp1fZQoaAZoCWgPQwjP+SmOg3dgQJSGlFKUaBVN6ANoFkdAhxM+Kbayr3V9lChoBmgJaA9DCHNmu0IfD19AlIaUUpRoFU3oA2gWR0CHFFFGXokidX2UKGgGaAloD0MIWcSww5hvXUCUhpRSlGgVTegDaBZHQIcj8ZFXq7l1fZQoaAZoCWgPQwj20D5W8NldQJSGlFKUaBVN6ANoFkdAhyXYNI9TxXV9lChoBmgJaA9DCN0m3CvzbEtAlIaUUpRoFUvsaBZHQIcmNvVEuxt1fZQoaAZoCWgPQwiAZDp0esBhQJSGlFKUaBVN6ANoFkdAhyqEXk5p8HV9lChoBmgJaA9DCJTBUfJqIGNAlIaUUpRoFU3oA2gWR0CHRVlbu+h5dX2UKGgGaAloD0MIi96pgHtvXUCUhpRSlGgVTegDaBZHQIdapmZmZmZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b0914da706f6c4ed26e1b49f0cd683736fe837156bb3db6dd1968bc56abaa24
|
3 |
+
size 144036
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe176320710>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe1763207a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe176320830>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe1763208c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe176320950>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe1763209e0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe176320a70>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe176320b00>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe176320b90>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe176320c20>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe176320cb0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe176367930>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651841089.1668882,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM0kD7voK1Y/+ioZvgqIl762xSQ9JcZmvQAAAAAAAAAAA+myvtISmjzywla79HUnOfXZmr1Fjns6AACAPwAAgD+z7jE9UliYODcCBrugjlM7lxISOqAN0rsAAAAAAAAAAA2G570U2pa6pTkYuZFHSDO74Pi6+BItOAAAgD8AAIA/7QqWvujRyby+YDo7DH+ZObM1MT5DpmS6AACAPwAAgD/zx6W9ZHJQPn2Igb4t0S2+VlqWvbqjWb4AAAAAAAAAANplkL3sgZW5dTZiu1oxXzd9FIG7AMfQtgAAgD8AAIA/mnL1vBQ4iroBGae7kUSNtSUPGbo6CPg0AACAPwAAgD/4Q7m+JPLFvVoxirvDRSG6NInIPhyYDLsAAIA/AACAP2ZW2LuP6me61rDAupEVNLXguXa77rbgOQAAgD8AAIA/mtg0Pbh26rn1KXS6MWeNtZJqGDqt3ow5AACAPwAAgD+aOIk84QyNui4E3rsLkJw1RAICubkUDLUAAIA/AACAP+M0Ur7DAH28XjFfO0Uhhjlnm+U9QouJugAAgD8AAIA/DQ5mvog27LxyPhW9jX2Pu3brUj7mslk8AACAPwAAgD+gvji+9lRXvMGhPb3+BoG7LHG/PegaUjwAAIA/AACAP40anb249qy5fueROndiPTTKJ8y6GaCruQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkMAffv58W0CUhpRSlIwBbJRN6AOMAXSUR0CCSuaVlf7adX2UKGgGaAloD0MIrKsCtRj8CsCUhpRSlGgVS/5oFkdAgmKsNDtw73V9lChoBmgJaA9DCLa+SGjLeTBAlIaUUpRoFUvsaBZHQIJiyMcZLqV1fZQoaAZoCWgPQwh5rYTuki9hQJSGlFKUaBVN6ANoFkdAgmi89fTkQ3V9lChoBmgJaA9DCHwKgPEMh1pAlIaUUpRoFU3oA2gWR0CCgDkjHGS7dX2UKGgGaAloD0MIPUfku5Q4X0CUhpRSlGgVTegDaBZHQIKOOvr4WUN1fZQoaAZoCWgPQwivJk9ZTVNaQJSGlFKUaBVN6ANoFkdAgo5qIrOJL3V9lChoBmgJaA9DCPThWYKMME7AlIaUUpRoFUvUaBZHQILS+eWfK6p1fZQoaAZoCWgPQwjRWtHmOL5SQJSGlFKUaBVN6ANoFkdAgtMTVDrquHV9lChoBmgJaA9DCIyDS8ecTznAlIaUUpRoFU0LAWgWR0CC1qM+eOGTdX2UKGgGaAloD0MIP6cgPxtfY0CUhpRSlGgVTegDaBZHQILaaCBf8dh1fZQoaAZoCWgPQwhpxqLp7K9kQJSGlFKUaBVN6ANoFkdAgwOzoEB8yHV9lChoBmgJaA9DCODYs+cycFdAlIaUUpRoFU3oA2gWR0CDCALG7z06dX2UKGgGaAloD0MI5bm+DwctXkCUhpRSlGgVTegDaBZHQIMYd4FA3UB1fZQoaAZoCWgPQwgcKPBOPgJaQJSGlFKUaBVNAwJoFkdAgx+iUornT3V9lChoBmgJaA9DCFcJFoczZlNAlIaUUpRoFU3oA2gWR0CDIpgG8mKJdX2UKGgGaAloD0MI8GskCcJSUUCUhpRSlGgVTegDaBZHQIMizQAuIyl1fZQoaAZoCWgPQwibG9MTlsxVQJSGlFKUaBVN6ANoFkdAgynSgGr0a3V9lChoBmgJaA9DCCKOdXEbBl5AlIaUUpRoFU3oA2gWR0CDK5WtlqagdX2UKGgGaAloD0MI36XUJeNYOECUhpRSlGgVS+ZoFkdAgzDo1k1/D3V9lChoBmgJaA9DCFkWTPzRGWFAlIaUUpRoFU3oA2gWR0CDPIypJf6XdX2UKGgGaAloD0MIg1K0ci+cMECUhpRSlGgVS+ZoFkdAgz18/MW43HV9lChoBmgJaA9DCHaIf9jSHUPAlIaUUpRoFUv4aBZHQINJCmO2iL51fZQoaAZoCWgPQwg+eO3Shj9bQJSGlFKUaBVN6ANoFkdAg1P/V7Qb/HV9lChoBmgJaA9DCPxwkBDlAy7AlIaUUpRoFUvdaBZHQINyEhaC+UR1fZQoaAZoCWgPQwge/wWCAJReQJSGlFKUaBVN6ANoFkdAg4Ee10DEFXV9lChoBmgJaA9DCGXiVkEM2l5AlIaUUpRoFU3oA2gWR0CDgU8xKxs3dX2UKGgGaAloD0MIMjhKXp3LWkCUhpRSlGgVTegDaBZHQIOEa0fHPu51fZQoaAZoCWgPQwhM++b+6upkQJSGlFKUaBVN6ANoFkdAg4SC7btZ3nV9lChoBmgJaA9DCHSYLy/AeVtAlIaUUpRoFU3oA2gWR0CDyt8WsRxtdX2UKGgGaAloD0MIyM9GrptFZUCUhpRSlGgVTegDaBZHQIPOWdiDujR1fZQoaAZoCWgPQwiH+l3YGr9hQJSGlFKUaBVN6ANoFkdAg/XvcrRSg3V9lChoBmgJaA9DCF0yjpFs/mJAlIaUUpRoFU3oA2gWR0CEExv863iJdX2UKGgGaAloD0MIcJo+O+BtYUCUhpRSlGgVTegDaBZHQIQWUdzXBgx1fZQoaAZoCWgPQwhSCyWT07dhQJSGlFKUaBVN6ANoFkdAhB62hqTKT3V9lChoBmgJaA9DCG6Kx0W1O1xAlIaUUpRoFU3oA2gWR0CEIO1XNke7dX2UKGgGaAloD0MIfQOTG8WJYUCUhpRSlGgVTegDaBZHQIQnKpaRp111fZQoaAZoCWgPQwg4MLlRZPU0wJSGlFKUaBVNFAFoFkdAhCsjh99c8nV9lChoBmgJaA9DCOwvuycPY19AlIaUUpRoFU3oA2gWR0CEM5KTSsr/dX2UKGgGaAloD0MIlpaRek/JUECUhpRSlGgVTegDaBZHQIQ0qM3qAz51fZQoaAZoCWgPQwiWBRN/FCEwQJSGlFKUaBVNEAFoFkdAhEMBouf29XV9lChoBmgJaA9DCFeYvtcQrCpAlIaUUpRoFUu+aBZHQIRE0vkBCD51fZQoaAZoCWgPQwgd5ssLsHtfQJSGlFKUaBVN6ANoFkdAhEmcf3evZHV9lChoBmgJaA9DCCDtf4C1x11AlIaUUpRoFU3oA2gWR0CEZFvze40/dX2UKGgGaAloD0MIc0wW9x/hWkCUhpRSlGgVTegDaBZHQIRx7h99c8l1fZQoaAZoCWgPQwiLVBhbiGlgQJSGlFKUaBVN6ANoFkdAhHIhwVCXyHV9lChoBmgJaA9DCBzuI7cm0F1AlIaUUpRoFU3oA2gWR0CEdSB8x9G7dX2UKGgGaAloD0MIforjwCtkYkCUhpRSlGgVTegDaBZHQIR1N2Pkq+d1fZQoaAZoCWgPQwjuXBjpRR1YQJSGlFKUaBVN6ANoFkdAhHiQaisXBXV9lChoBmgJaA9DCHMTtTQ3LmBAlIaUUpRoFU3oA2gWR0CEv4jQiRnwdX2UKGgGaAloD0MIby2T4XjSMUCUhpRSlGgVTRIBaBZHQITk56yB06p1fZQoaAZoCWgPQwiq9BPO7vlgQJSGlFKUaBVN6ANoFkdAhQRL127nPnV9lChoBmgJaA9DCFw8vOdAPmVAlIaUUpRoFU3oA2gWR0CFESqYqoZRdX2UKGgGaAloD0MID0bsE8AVYECUhpRSlGgVTegDaBZHQIUTtBlcyFh1fZQoaAZoCWgPQwisqpffaShfQJSGlFKUaBVN6ANoFkdAhR/e2VmjCnV9lChoBmgJaA9DCMf0hCUejFdAlIaUUpRoFU3oA2gWR0CFKlUdaMaTdX2UKGgGaAloD0MIQ1n4+lo4VkCUhpRSlGgVTegDaBZHQIUrlonKGL11fZQoaAZoCWgPQwivldBdEpddQJSGlFKUaBVN6ANoFkdAhTw0knkT6HV9lChoBmgJaA9DCNeKNse5yF9AlIaUUpRoFU3oA2gWR0CFPhpB5X2edX2UKGgGaAloD0MIU8xB0NGVW0CUhpRSlGgVTegDaBZHQIVDAku6ErZ1fZQoaAZoCWgPQwiUMT7MXtVdQJSGlFKUaBVN6ANoFkdAhV68oYvWYnV9lChoBmgJaA9DCEuRfCWQ619AlIaUUpRoFU3oA2gWR0CFbGgjhUBGdX2UKGgGaAloD0MISOF6FK6eZECUhpRSlGgVTegDaBZHQIVsmHDaXa91fZQoaAZoCWgPQwga3xeXqm9eQJSGlFKUaBVN6ANoFkdAhW+s1KoQ4HV9lChoBmgJaA9DCP3c0JQdZ2BAlIaUUpRoFU3oA2gWR0CFc5aURnOCdX2UKGgGaAloD0MI78ftl89HY0CUhpRSlGgVTegDaBZHQIV3gw/PgNx1fZQoaAZoCWgPQwjsa11qhAYnQJSGlFKUaBVL0WgWR0CF0d/EwWWQdX2UKGgGaAloD0MI0VlmEYr5WUCUhpRSlGgVTegDaBZHQIXg6ArhBJJ1fZQoaAZoCWgPQwjJ5NTOMDUjwJSGlFKUaBVNHwFoFkdAhewF0gbIcXV9lChoBmgJaA9DCB8tzhjmblxAlIaUUpRoFU3oA2gWR0CF/qNHYpUhdX2UKGgGaAloD0MIS4+merJJYkCUhpRSlGgVTegDaBZHQIYJ+UB4lhR1fZQoaAZoCWgPQwiNJhdjYMUnwJSGlFKUaBVNLAFoFkdAhgr0z0pVj3V9lChoBmgJaA9DCDkJpS+Ecl1AlIaUUpRoFU3oA2gWR0CGDCtJ4B3idX2UKGgGaAloD0MIwjHLngTgYECUhpRSlGgVTegDaBZHQIYWt/OMVDd1fZQoaAZoCWgPQwia7nVS37BjQJSGlFKUaBVN6ANoFkdAhh/LrxAjZHV9lChoBmgJaA9DCOhpwCDpX1pAlIaUUpRoFU3oA2gWR0CGION8VpK0dX2UKGgGaAloD0MIPiMRGsFgXkCUhpRSlGgVTegDaBZHQIYw5V81Gb11fZQoaAZoCWgPQwjovpzZrp5WQJSGlFKUaBVN6ANoFkdAhjK6zmfXgHV9lChoBmgJaA9DCOYF2Een6mJAlIaUUpRoFU3oA2gWR0CGN4l8gIQfdX2UKGgGaAloD0MIBRTq6SN0ZECUhpRSlGgVTegDaBZHQIZQb8WKuSx1fZQoaAZoCWgPQwgCKhxBKsxfQJSGlFKUaBVN6ANoFkdAhlzSeAd4mnV9lChoBmgJaA9DCOviNhrAE1dAlIaUUpRoFU3oA2gWR0CGX69ovi97dX2UKGgGaAloD0MIVfoJZzdYYECUhpRSlGgVTegDaBZHQIZjUKPXCj11fZQoaAZoCWgPQwiCHJQw044rQJSGlFKUaBVNCwFoFkdAhtAsZxaPjnV9lChoBmgJaA9DCI1jJHuED1pAlIaUUpRoFU3oA2gWR0CG1O02tMfzdX2UKGgGaAloD0MI5UF6ihxaKkCUhpRSlGgVTRwBaBZHQIbXagCfYjB1fZQoaAZoCWgPQwhC6KBLONpaQJSGlFKUaBVN6ANoFkdAhuGcXvYvnXV9lChoBmgJaA9DCDikUYGTyVBAlIaUUpRoFU3oA2gWR0CG8sgmJFb3dX2UKGgGaAloD0MIu16aIkCtYUCUhpRSlGgVTegDaBZHQIb+AnKGL1p1fZQoaAZoCWgPQwi+pZwvdoRgQJSGlFKUaBVN6ANoFkdAhv76jN6gNHV9lChoBmgJaA9DCJbtQ95yC1pAlIaUUpRoFU3oA2gWR0CHAC0fozN2dX2UKGgGaAloD0MIdEaU9gaxX0CUhpRSlGgVTegDaBZHQIcKUQRPGhp1fZQoaAZoCWgPQwjP+SmOg3dgQJSGlFKUaBVN6ANoFkdAhxM+Kbayr3V9lChoBmgJaA9DCHNmu0IfD19AlIaUUpRoFU3oA2gWR0CHFFFGXokidX2UKGgGaAloD0MIWcSww5hvXUCUhpRSlGgVTegDaBZHQIcj8ZFXq7l1fZQoaAZoCWgPQwj20D5W8NldQJSGlFKUaBVN6ANoFkdAhyXYNI9TxXV9lChoBmgJaA9DCN0m3CvzbEtAlIaUUpRoFUvsaBZHQIcmNvVEuxt1fZQoaAZoCWgPQwiAZDp0esBhQJSGlFKUaBVN6ANoFkdAhyqEXk5p8HV9lChoBmgJaA9DCJTBUfJqIGNAlIaUUpRoFU3oA2gWR0CHRVlbu+h5dX2UKGgGaAloD0MIi96pgHtvXUCUhpRSlGgVTegDaBZHQIdapmZmZmZ1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8b6b75a69712bba6cb10dddb48669587435c72df2e5140ef3d4581fb9aa9ddd0
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e41a32710c6ee23eadb493c549a646acce89d2cc6fcf4ca784509e067245e891
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cdfce26b6ac354b9e56b761759e79cbbc2b4533e03ab09e9bf4f1637725e73e
|
3 |
+
size 258302
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 211.11295492957737, "std_reward": 22.822853104136957, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-06T12:58:41.817785"}
|