{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c66532dfa00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1738244669111895404, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAB4UCD9hmq4+h9IVPiOFf76yF2Q94gyHvAAAAAAAAAAAI7ZovkDsgT+m3o++hOCGvmfoN76JZQa9AAAAAAAAAAA1MeO+8U4fPIT0NLuORRA5ssgjvju5ZLoAAIA/AACAP4CO9D7N9zQ+Po54PW4kKr5/fo4987Y6PQAAAAAAAAAA89rOvVy7F7ps7y66FpeOtnbxNDpAj0s5AACAPwAAgD9Al7g94WyfuiOY7jsMupE3l0qNN3ZTeTYAAIA/AACAP81i6D3DuBQ/8zl9O9oYnr6v+YG93z/APQAAAAAAAAAA3Rt+vrxrNj8aJTW+ZwSHvu2iZr29LdE8AAAAAAAAAACNLG4/dB5ovb0TID5lfTG9F8TZviIC+z0AAAAAAAAAACZ+077X9aa9MBf+vR+war5c6Is9K2rLvQAAAAAAAAAAs/sLPWClmD74XUQ981lIvlfYhD0qB/O8AAAAAAAAAADa9I2916NbOD2m8LpmdgSzQ8Aaux5MEjoAAIA/AACAPxW3yL53elQ/Dh6CvmVed75G/3C9tfcsPgAAAAAAAAAAg+BQvjQmGD7CTUQ6xOcgvgNxhz2a1fw8AAAAAAAAAACA7WW99uAKui0ueLuxQzY25Yvpu5sKkToAAIA/AACAP2o/pr6ETSy9jLfBPJVqIbv+3W4+nj6sPAAAgD8AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQFziEcbR4QmMAWyUTegDjAF0lEdAfL52h7E5yXV9lChoBkdAWDK9ytFKCmgHTegDaAhHQHzKCP6sQup1fZQoaAZHwCOj3RG+bmVoB029AWgIR0B80oRL9MsZdX2UKGgGR8BG19iUgSvlaAdLxWgIR0B84FD4QBgedX2UKGgGR8ApgpOvdM0xaAdNCQFoCEdAfOtKqn3tbHV9lChoBkdAWSFALRa5gGgHTegDaAhHQHz0BSUC7sh1fZQoaAZHQFXsoZhrnDBoB03oA2gIR0B8/TkLhJiBdX2UKGgGR8BLccIzFdcCaAdNJAFoCEdAfRmWT5ftyHV9lChoBkdAF77Xg9/z8WgHTQ0BaAhHQH0lG0E5hjR1fZQoaAZHQF+QAYYR/VloB03oA2gIR0B9PFT0g8r7dX2UKGgGR0BjUDbFjurqaAdN6ANoCEdAfVfMA3kxRHV9lChoBkdAWnarXDm8umgHTegDaAhHQH1X1mSQo1F1fZQoaAZHQFdORnvlU6xoB03oA2gIR0B9V+Tt9hJAdX2UKGgGR0Bgj1at9x6waAdN6ANoCEdAffQm3fAKv3V9lChoBkdAUWAQ8OkLyGgHTegDaAhHQH32/grH2h91fZQoaAZHwDz+K64Ds+poB00qAWgIR0B9+3MMZxaQdX2UKGgGR0BbGGO+7Dl6aAdN6ANoCEdAffyjPOY6XHV9lChoBkdAXaTot+TePGgHTegDaAhHQH3+8NYr8SB1fZQoaAZHQFU+EYO2AoZoB03oA2gIR0B+Avz6JqIrdX2UKGgGR0BbywG4ZuQ7aAdN6ANoCEdAfgWgElme2HV9lChoBkdAYcqSRKYiPmgHTegDaAhHQH4SfustCiR1fZQoaAZHQEmIdCE6DGtoB03oA2gIR0B+OWCjDbaidX2UKGgGR8A+G0ygwoLHaAdNJgFoCEdAfj+Uj9n9N3V9lChoBkfANCAFs54nnmgHTSQBaAhHQH5AGD15B1N1fZQoaAZHQF5Bt8NQTEloB03oA2gIR0B+QU5GSZBtdX2UKGgGR0Bf2mbCrLhaaAdN6ANoCEdAfklrRSgoPXV9lChoBkfAVA2i22G7BmgHTUcBaAhHQH5Khw++ueV1fZQoaAZHQGEUmqHXVb1oB03oA2gIR0B+YT7vXsgMdX2UKGgGR0BbZpM10knkaAdN6ANoCEdAfm4p6QeV9nV9lChoBkdAZO0uZCv5g2gHTS4CaAhHQH6HGQ0XP7h1fZQoaAZHQFfvCeEqUeNoB03oA2gIR0B+iL7+DOC5dX2UKGgGR8BEBiwbEP1+aAdN7wFoCEdAfomrD63y7XV9lChoBkdAWC2PJaJQ+GgHTegDaAhHQH6saH446wN1fZQoaAZHQGJGGN70Fr5oB03oA2gIR0B+rHZtelbedX2UKGgGR8BUFQBDG96DaAdNPgFoCEdAfw7ouf29MHV9lChoBkfAGx/3nIQvpWgHTT0BaAhHQH8oQw9JSR91fZQoaAZHQFyvMqBmPHVoB03oA2gIR0B/OJ68g6ltdX2UKGgGR0BilR02cawVaAdN6ANoCEdAfzsDQJHAh3V9lChoBkdAWqd9YwIt2GgHTegDaAhHQH9IY7aIval1fZQoaAZHQDYOYc/+sHVoB03oA2gIR0B/kj7aZhKEdX2UKGgGR0BbIEep4rz5aAdN6ANoCEdAf5j2zv7WNHV9lChoBkdAYUX2saKk22gHTegDaAhHQH+Zf+GXXy11fZQoaAZHQFvZ4fOlfqpoB03oA2gIR0B/msMRYigTdX2UKGgGR0BbvBJVbRnfaAdN6ANoCEdAf6NMy8BdU3V9lChoBkdAYD+XZXdTHmgHTegDaAhHQH+kYJZ4fOl1fZQoaAZHQGFzd0Rvm5loB03oA2gIR0B/ul10T101dX2UKGgGR0BOuTgEU0vXaAdN6ANoCEdAf98jvd/KAHV9lChoBkfAMgP9YOlO5GgHS/5oCEdAf9/9WIXTE3V9lChoBkdAYe0iosI3SGgHTegDaAhHQH/ggCOmzjZ1fZQoaAZHQFbKu/k/8l5oB03oA2gIR0B//V6v7m+1dX2UKGgGR0BeR5gssg+yaAdN6ANoCEdAf/1qCpWFOHV9lChoBkdAY6AKx9oexWgHTZgCaAhHQH/9442jwhJ1fZQoaAZHQCwYlIEr5IpoB01YAWgIR0CACBJEpiI+dX2UKGgGR0BgpPiBGx2TaAdN6ANoCEdAgAsjU/fO2XV9lChoBkfAMoq8cuJ1q2gHS/RoCEdAgDYS/CZWrHV9lChoBkdAWglc6eXiSGgHTegDaAhHQIA/L7MxGlR1fZQoaAZHwCta/Zdv865oB01JAWgIR0CAP/wEyLyddX2UKGgGR0BRg5CWu5jIaAdN6ANoCEdAgEZzBqKxcHV9lChoBkdAW3bQD3dsSGgHTegDaAhHQIBHgSvkill1fZQoaAZHwFW+wSrYGt9oB007AWgIR0CASyMefZmJdX2UKGgGR8BJCh8YyfthaAdNLwFoCEdAgFgOwHJLd3V9lChoBkdAaQ1syi22HGgHTb8BaAhHQIBZ3hCMPz51fZQoaAZHwGGK/Ijnmq5oB00sAWgIR0CAYQHYYixFdX2UKGgGR0BKDmNzbN8maAdN6ANoCEdAgGgcVpKzzHV9lChoBkdAWts6vJRwZWgHTegDaAhHQIBqx//echF1fZQoaAZHQFYRdonKGL1oB03oA2gIR0CAavzQNTcZdX2UKGgGR0BabVE/jbSJaAdN6ANoCEdAgGuDp1RtQHV9lChoBkfAUuyDJ2dNFmgHTWUBaAhHQIBuPShJyyV1fZQoaAZHQFf8OOKfnOloB03oA2gIR0CAbtdE9dNWdX2UKGgGR0A2ysImgJ1JaAdNEgFoCEdAgHXsHjZL7HV9lChoBkfAUkIgpz90imgHTXoBaAhHQIB/iFoL5RF1fZQoaAZHQEaz3BYV6/toB03oA2gIR0CAi+wXZXdTdX2UKGgGR8BdOpzHS4OMaAdNNQFoCEdAgI3X9zfaYnV9lChoBkdAZhXHkLhJiGgHTZgCaAhHQICVKQtBfKJ1fZQoaAZHQF0MY3vQWvdoB03oA2gIR0CAm9KRMewLdX2UKGgGR0AuqwlByCFsaAdNKAFoCEdAgJ3VawD/2nV9lChoBkfAO+5jhDPWx2gHTQoBaAhHQICkfmq5sj51fZQoaAZHQGJsHl4keIVoB03oA2gIR0CApToysS00dX2UKGgGR0BJuaScLBsRaAdN6ANoCEdAgKgbKifxt3V9lChoBkfAUTbW9US7G2gHTQMBaAhHQIDRKnpB5X51fZQoaAZHQFq3/s3Q2MtoB03oA2gIR0CA2CYGdI5HdX2UKGgGR0BhAs78vVVhaAdN6ANoCEdAgONiIcinpHV9lChoBkfALG9ZRsMy8GgHTSYBaAhHQIDqoyfthNN1fZQoaAZHwEYue5Fw1ixoB006AWgIR0CA/a8SPEKmdX2UKGgGR0BhNqLhrFfiaAdN6ANoCEdAgQLHndO6/nV9lChoBkdAXHYz9CNS62gHTegDaAhHQIEK0wztTk11fZQoaAZHQGJMK+8Gs3hoB03oA2gIR0CBDkY77sOYdX2UKGgGR0BmElM/QjUvaAdNUwJoCEdAgQ5k2YOUdXV9lChoBkdANaPeHi3ocWgHTegDaAhHQIEO4VmBe5Z1fZQoaAZHQFDLZML4N7VoB03oA2gIR0CBErDF6zE8dX2UKGgGR0BPhSKm8/UwaAdN6ANoCEdAgRN0sWfseHV9lChoBkfAQ0V+uvECNmgHTRQBaAhHQIEtlFjNILB1fZQoaAZHQFn5mHxjJ+5oB03oA2gIR0CBMAdkrf+CdX2UKGgGR8BYLSUxEfDDaAdNVAFoCEdAgTY8n3L3bnV9lChoBkdAYU9Fb3XZoWgHTegDaAhHQIE3O1F6Rhd1fZQoaAZHP/qGjbi6xxFoB01BAWgIR0CBOKLOzIFNdX2UKGgGR0BWXLNSqEOBaAdN6ANoCEdAgT+JoK2KEXV9lChoBkfAaN2U/wAlwGgHTY4BaAhHQIFA1VvMr3F1fZQoaAZHQFupX2/SH/NoB03oA2gIR0CBRn4A0bcXdX2UKGgGR0BTUHXumaYvaAdN6ANoCEdAgUl72USqVHVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 120, "observation_space": {":type:": "", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}