--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: ConvNext-base-chesapeake-land-cover-v0 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9918582375478927 widget: - src: https://imgs.mongabay.com/wp-content/uploads/sites/20/2020/04/07204605/amazon_coca_01.jpg example_title: Tree Canopy - src: https://images.ctfassets.net/nzn0tepgtyr1/4tyavnFHhmNuVky1ISq51k/64aaf596f6b8ee12d0f0e898679c8f4f/Hero_Image.jpg?w=1024&h=710&fl=progressive&q=50&fm=jpg&bg=transparent example_title: Low Vegetation - src: https://outline-prod.imgix.net/20170228-YxGtsv8J0ePP0rXcnle2?auto=format&q=60&w=1280&s=27916f48ed9226c2a2b7848de8d7c0d1 example_title: Impervious Surfaces --- # ConvNext-base-chesapeake-land-cover-v0 This model is a fine-tuned version of [facebook/convnext-base-224](https://huggingface.co/facebook/convnext-base-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0269 - Accuracy: 0.9919 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.0076 | 3.45 | 300 | 0.0269 | 0.9919 | ### Framework versions - Transformers 4.24.0 - Pytorch 1.12.1+cu113 - Datasets 2.7.0 - Tokenizers 0.13.2