File size: 5,301 Bytes
5c6c6e1 bcd61ee 5c6c6e1 ae951c8 5c6c6e1 ae951c8 a93f457 bcd61ee 5c6c6e1 5d578ca ae951c8 5d578ca 5c6c6e1 0a4d2de 5c6c6e1 b679fa8 5c6c6e1 0a4d2de 5c6c6e1 127d5ba 5c6c6e1 a1ad655 b679fa8 a1ad655 5c6c6e1 b679fa8 5c6c6e1 b679fa8 5c6c6e1 b679fa8 5c6c6e1 b679fa8 5c6c6e1 1a8b424 5c6c6e1 b679fa8 5c6c6e1 b679fa8 fb3eaed 5c6c6e1 24e8539 5c6c6e1 77c90fa dbaf161 5c6c6e1 7d5ab37 5c6c6e1 a1ad655 bcd61ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
---
datasets:
- OpenAssistant/oasst1
pipeline_tag: text-generation
license: tii-falcon-llm
language:
- en
---
# 🚀 Falcon-7b-chat-oasst1
Falcon-7b-chat-oasst1 is a chatbot-like model for dialogue generation. It was built by fine-tuning [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) on the [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) dataset.
## Model Summary
- **Model Type:** Causal decoder-only
- **Language(s):** English
- **Base Model:** [Falcon-7B](https://huggingface.co/tiiuae/falcon-7b) (License: [TII Falcon LLM License](https://huggingface.co/tiiuae/falcon-7b#license))
- **Dataset:** [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) (License: [Apache 2.0](https://huggingface.co/datasets/OpenAssistant/oasst1/blob/main/LICENSE))
- **License(s):** Inherited from "Base Model" and "Dataset"
## Model Details
The model was fine-tuned in 4-bit precision using 🤗 `peft` adapters, `transformers`, and `bitsandbytes`. Training relied on a method called "Low Rank Adapters" ([LoRA](https://arxiv.org/pdf/2106.09685.pdf)), specifically the [QLoRA](https://arxiv.org/abs/2305.14314) variant. The run took approximately 3 hours and was executed on a workstation with a single A100-SXM NVIDIA GPU with 37 GB of available memory. See attached [Colab Notebook](https://huggingface.co/dfurman/falcon-7b-chat-oasst1/blob/main/finetune_falcon7b_oasst1_with_bnb_peft.ipynb) for the code and hyperparams used to train the model.
### Model Date
May 30, 2023
## Quick Start
To prompt the chat model, use the following format:
```
<human>: [Instruction]
<bot>:
```
### Example Dialogue 1
**Prompter**:
```
"""<human>: My name is Daniel. Write a short email to my closest friends inviting them to come to my home on Friday for a dinner party, I will make the food but tell them to BYOB.
<bot>:"""
```
**Falcon-7b-chat-oasst1**:
```
[coming]
```
### Example Dialogue 2
**Prompter**:
```
<human>: Create a list of four things to do in San Francisco.
<bot>:
```
**Falcon-7b-chat-oasst1**:
```
[coming]
```
### Direct Use
This model has been finetuned on conversation trees from [OpenAssistant/oasst1](https://huggingface.co/datasets/OpenAssistant/oasst1) and should only be used on data of a similar nature.
### Out-of-Scope Use
Production use without adequate assessment of risks and mitigation; any use cases which may be considered irresponsible or harmful.
## Bias, Risks, and Limitations
This model is mostly trained on English data, and will not generalize appropriately to other languages. Furthermore, as it is trained on a large-scale corpora representative of the web, it will carry the stereotypes and biases commonly encountered online.
### Recommendations
We recommend users of this model to develop guardrails and to take appropriate precautions for any production use.
## How to Get Started with the Model
### Setup
```python
# Install packages
!pip install -q -U bitsandbytes loralib einops
!pip install -q -U git+https://github.com/huggingface/transformers.git
!pip install -q -U git+https://github.com/huggingface/peft.git
!pip install -q -U git+https://github.com/huggingface/accelerate.git
```
### GPU Inference in 4-bit
This requires a GPU with at least XXGB of memory.
```python
import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
# load the model
peft_model_id = "dfurman/falcon-7b-chat-oasst1"
config = PeftConfig.from_pretrained(peft_model_id)
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
config.base_model_name_or_path,
return_dict=True,
quantization_config=bnb_config,
device_map={"":0},
trust_remote_code=True,
)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer.pad_token = tokenizer.eos_token
model = PeftModel.from_pretrained(model, peft_model_id)
# run the model
prompt = """<human>: My name is Daniel. Write a short email to my closest friends inviting them to come to my home on Friday for a dinner party, I will make the food but tell them to BYOB.
<bot>:"""
batch = tokenizer(
prompt,
padding=True,
truncation=True,
return_tensors='pt'
)
batch = batch.to('cuda:0')
with torch.cuda.amp.autocast():
output_tokens = model.generate(
input_ids = batch.input_ids,
max_new_tokens=200,
temperature=0.7,
top_p=0.7,
num_return_sequences=1,
pad_token_id=tokenizer.eos_token_id,
eos_token_id=tokenizer.eos_token_id,
)
# Inspect outputs
print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True))
```
## Reproducibility
See attached [Colab Notebook](https://huggingface.co/dfurman/falcon-7b-chat-oasst1/blob/main/finetune_falcon7b_oasst1_with_bnb_peft.ipynb) for the code (and hyperparams) used to train the model.
### CUDA Info
- CUDA Version: 12.0
- Hardware: 1 A100-SXM
- Max Memory: {0: "37GB"}
- Device Map: {"": 0}
### Package Versions Employed
- `torch`: 2.0.1+cu118
- `transformers`: 4.30.0.dev0
- `peft`: 0.4.0.dev0
- `accelerate`: 0.19.0
- `bitsandbytes`: 0.39.0
- `einops`: 0.6.1 |