Create maindata
Browse files
maindata
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pip install torch diffusers transformers datasets wandb
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.nn import functional as F
|
5 |
+
|
6 |
+
# Define a basic U-Net style model (you can scale this up for an XL model)
|
7 |
+
class UNetModel(nn.Module):
|
8 |
+
def __init__(self, in_channels=3, out_channels=3, base_channels=64):
|
9 |
+
super(UNetModel, self).__init__()
|
10 |
+
|
11 |
+
# Downsample
|
12 |
+
self.enc1 = self.conv_block(in_channels, base_channels)
|
13 |
+
self.enc2 = self.conv_block(base_channels, base_channels * 2)
|
14 |
+
self.enc3 = self.conv_block(base_channels * 2, base_channels * 4)
|
15 |
+
|
16 |
+
# Middle
|
17 |
+
self.middle = self.conv_block(base_channels * 4, base_channels * 8)
|
18 |
+
|
19 |
+
# Upsample
|
20 |
+
self.dec3 = self.conv_block(base_channels * 8, base_channels * 4)
|
21 |
+
self.dec2 = self.conv_block(base_channels * 4, base_channels * 2)
|
22 |
+
self.dec1 = self.conv_block(base_channels * 2, out_channels)
|
23 |
+
|
24 |
+
def conv_block(self, in_channels, out_channels):
|
25 |
+
return nn.Sequential(
|
26 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
27 |
+
nn.ReLU(),
|
28 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
29 |
+
nn.ReLU(),
|
30 |
+
nn.MaxPool2d(2)
|
31 |
+
)
|
32 |
+
|
33 |
+
def forward(self, x):
|
34 |
+
# Encode (Downsample)
|
35 |
+
x1 = self.enc1(x)
|
36 |
+
x2 = self.enc2(x1)
|
37 |
+
x3 = self.enc3(x2)
|
38 |
+
|
39 |
+
# Middle block
|
40 |
+
x_middle = self.middle(x3)
|
41 |
+
|
42 |
+
# Decode (Upsample)
|
43 |
+
x3_dec = self.dec3(x_middle)
|
44 |
+
x2_dec = self.dec2(x3_dec + x3)
|
45 |
+
x1_dec = self.dec1(x2_dec + x2)
|
46 |
+
|
47 |
+
return x1_dec
|