Commit
·
be1a4f6
1
Parent(s):
cf444e6
Upload Copy_of_image_classification_using_cnn.ipynb
Browse files
Copy_of_image_classification_using_cnn.ipynb
ADDED
@@ -0,0 +1,1099 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"source": [
|
6 |
+
"## Download dataset and connect your Google drive\n",
|
7 |
+
"for that you need to get kaggle.json file for [here](https://www.kaggle.com/settings/account) where you will see API section under which you will have option to ```\"Create New Token\"``` ,which will download a ```kaggle.json``` file, upload that file it working dir."
|
8 |
+
],
|
9 |
+
"metadata": {
|
10 |
+
"id": "TZ9ndnKCKnyQ"
|
11 |
+
}
|
12 |
+
},
|
13 |
+
{
|
14 |
+
"cell_type": "code",
|
15 |
+
"execution_count": null,
|
16 |
+
"metadata": {
|
17 |
+
"id": "_YzUO8UV7HgP"
|
18 |
+
},
|
19 |
+
"outputs": [],
|
20 |
+
"source": [
|
21 |
+
"!pip install -q kaggle\n",
|
22 |
+
"!mkdir -p ~/.kaggle\n",
|
23 |
+
"!cp kaggle.json ~/.kaggle/\n",
|
24 |
+
"!chmod 600 ~/.kaggle/kaggle.json\n",
|
25 |
+
"!kaggle datasets download -d divaxshah/cities-all\n",
|
26 |
+
"!unzip /content/cities-all.zip"
|
27 |
+
]
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"cell_type": "code",
|
31 |
+
"execution_count": null,
|
32 |
+
"metadata": {
|
33 |
+
"id": "9y543mK87Gif"
|
34 |
+
},
|
35 |
+
"outputs": [],
|
36 |
+
"source": [
|
37 |
+
"!pip install split-folders tensorflow[torch] seaborn numpy matplotlib"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "code",
|
42 |
+
"source": [
|
43 |
+
"from google.colab import drive\n",
|
44 |
+
"drive.mount('/content/drive')"
|
45 |
+
],
|
46 |
+
"metadata": {
|
47 |
+
"id": "CBecy2sZBMGY"
|
48 |
+
},
|
49 |
+
"execution_count": null,
|
50 |
+
"outputs": []
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "markdown",
|
54 |
+
"metadata": {
|
55 |
+
"id": "tvrwZoW_7Gih"
|
56 |
+
},
|
57 |
+
"source": [
|
58 |
+
"### **Importing of Necessary Libraries**"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "code",
|
63 |
+
"execution_count": null,
|
64 |
+
"metadata": {
|
65 |
+
"id": "x4OJYagW7Gii"
|
66 |
+
},
|
67 |
+
"outputs": [],
|
68 |
+
"source": [
|
69 |
+
"import matplotlib.pyplot as plt\n",
|
70 |
+
"import seaborn as sns\n",
|
71 |
+
"import numpy as np\n",
|
72 |
+
"import pandas as pd\n",
|
73 |
+
"import random\n",
|
74 |
+
"import cv2\n",
|
75 |
+
"import os\n",
|
76 |
+
"import PIL\n",
|
77 |
+
"import pathlib\n",
|
78 |
+
"import splitfolders\n",
|
79 |
+
"\n",
|
80 |
+
"import tensorflow as tf\n",
|
81 |
+
"from tensorflow import keras\n",
|
82 |
+
"from tensorflow.keras import layers\n",
|
83 |
+
"from tensorflow.keras.models import Sequential\n",
|
84 |
+
"from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau\n",
|
85 |
+
"from keras.preprocessing.image import ImageDataGenerator\n",
|
86 |
+
"from keras.applications.vgg16 import VGG16"
|
87 |
+
]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"cell_type": "markdown",
|
91 |
+
"metadata": {
|
92 |
+
"id": "jk3HfsKQ7Gij"
|
93 |
+
},
|
94 |
+
"source": [
|
95 |
+
"### **Dataset Loading and Splitting**\n",
|
96 |
+
"Split-folders library was used to split the dataset into three parts: Training set(70%), Validation set(15%), and Test set(15%)."
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": null,
|
102 |
+
"metadata": {
|
103 |
+
"id": "KAc3avxf7Gij"
|
104 |
+
},
|
105 |
+
"outputs": [],
|
106 |
+
"source": [
|
107 |
+
"base_ds = '/content/Citeisall'\n",
|
108 |
+
"base_ds = pathlib.Path(base_ds)"
|
109 |
+
]
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "code",
|
113 |
+
"execution_count": null,
|
114 |
+
"metadata": {
|
115 |
+
"id": "fDH51KsE7Gik",
|
116 |
+
"colab": {
|
117 |
+
"base_uri": "https://localhost:8080/"
|
118 |
+
},
|
119 |
+
"outputId": "88652468-e628-44fe-91f6-f093a05649b8"
|
120 |
+
},
|
121 |
+
"outputs": [
|
122 |
+
{
|
123 |
+
"output_type": "stream",
|
124 |
+
"name": "stderr",
|
125 |
+
"text": [
|
126 |
+
"Copying files: 12500 files [00:13, 928.79 files/s]\n"
|
127 |
+
]
|
128 |
+
}
|
129 |
+
],
|
130 |
+
"source": [
|
131 |
+
"splitfolders.ratio(base_ds, output='/content/imgs', seed=123, ratio=(.7,.15,.15), group_prefix=None)"
|
132 |
+
]
|
133 |
+
},
|
134 |
+
{
|
135 |
+
"cell_type": "code",
|
136 |
+
"execution_count": null,
|
137 |
+
"metadata": {
|
138 |
+
"id": "WFsRGuU07Gik"
|
139 |
+
},
|
140 |
+
"outputs": [],
|
141 |
+
"source": [
|
142 |
+
"Ahmedabad = [fn for fn in os.listdir(f'{base_ds}/Ahmedabad') if fn.endswith('.jpg')]\n",
|
143 |
+
"Delhi = [fn for fn in os.listdir(f'{base_ds}/Delhi') if fn.endswith('.jpg')]\n",
|
144 |
+
"Kerala = [fn for fn in os.listdir(f'{base_ds}/Kerala') if fn.endswith('.jpg')]\n",
|
145 |
+
"Kolkata = [fn for fn in os.listdir(f'{base_ds}/Kolkata') if fn.endswith('.jpg')]\n",
|
146 |
+
"Mumbai = [fn for fn in os.listdir(f'{base_ds}/Mumabi') ]\n",
|
147 |
+
"city = [Ahmedabad, Delhi, Kerala, Kolkata, Mumbai]\n",
|
148 |
+
"city_classes = []\n",
|
149 |
+
"for i in os.listdir('imgs/train'):\n",
|
150 |
+
" city_classes+=[i]\n",
|
151 |
+
"city_classes.sort()"
|
152 |
+
]
|
153 |
+
},
|
154 |
+
{
|
155 |
+
"cell_type": "markdown",
|
156 |
+
"metadata": {
|
157 |
+
"id": "zIOajVox7Gik"
|
158 |
+
},
|
159 |
+
"source": [
|
160 |
+
"### **Dataset Exploration**\n",
|
161 |
+
"It can be seen here the total number of images in the dataset, the number of classes, and how well the images from each variety is distributed"
|
162 |
+
]
|
163 |
+
},
|
164 |
+
{
|
165 |
+
"cell_type": "code",
|
166 |
+
"execution_count": null,
|
167 |
+
"metadata": {
|
168 |
+
"id": "RKugur_t7Gil"
|
169 |
+
},
|
170 |
+
"outputs": [],
|
171 |
+
"source": [
|
172 |
+
"image_count = len(list(base_ds.glob('*/*.jpg')))\n",
|
173 |
+
"print(f'Total images: {image_count}')\n",
|
174 |
+
"print(f'Total number of classes: {len(city_classes)}')\n",
|
175 |
+
"count = 0\n",
|
176 |
+
"city_count = []\n",
|
177 |
+
"for x in city_classes:\n",
|
178 |
+
" print(f'Total {x} images: {len(city[count])}')\n",
|
179 |
+
" city_count.append(len(city[count]))\n",
|
180 |
+
" count += 1\n",
|
181 |
+
"\n",
|
182 |
+
"sns.set_style('darkgrid')\n",
|
183 |
+
"sns.barplot(x=city_classes, y=city_count, palette=\"Blues_d\")\n",
|
184 |
+
"plt.show()"
|
185 |
+
]
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"cell_type": "markdown",
|
189 |
+
"metadata": {
|
190 |
+
"id": "K-i3dnII7Gil"
|
191 |
+
},
|
192 |
+
"source": [
|
193 |
+
"### Sample Images\n",
|
194 |
+
"Each image from the dataset has a dimension of 250 by 250 and a color type of RGB"
|
195 |
+
]
|
196 |
+
},
|
197 |
+
{
|
198 |
+
"cell_type": "code",
|
199 |
+
"execution_count": null,
|
200 |
+
"metadata": {
|
201 |
+
"id": "rBjHPfUL7Gil"
|
202 |
+
},
|
203 |
+
"outputs": [],
|
204 |
+
"source": [
|
205 |
+
"sample_img = cv2.imread('/content/imgs/test/Ahmedabad/Ahmedabad-Test (1).jpg')\n",
|
206 |
+
"plt.imshow(sample_img)\n",
|
207 |
+
"print(f'Image dimensions: {sample_img.shape}')"
|
208 |
+
]
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"cell_type": "code",
|
212 |
+
"execution_count": null,
|
213 |
+
"metadata": {
|
214 |
+
"id": "Yy6zeno07Gim"
|
215 |
+
},
|
216 |
+
"outputs": [],
|
217 |
+
"source": [
|
218 |
+
"def load_random_img(dir, label):\n",
|
219 |
+
" plt.figure(figsize=(10,10))\n",
|
220 |
+
" i=0\n",
|
221 |
+
" for label in city_classes:\n",
|
222 |
+
" i+=1\n",
|
223 |
+
" plt.subplot(1, 5, i)\n",
|
224 |
+
" file = random.choice(os.listdir(f'{dir}/{label}'))\n",
|
225 |
+
" image_path = os.path.join(f'{dir}/{label}', file)\n",
|
226 |
+
" img=cv2.imread(image_path)\n",
|
227 |
+
" plt.title(label)\n",
|
228 |
+
" plt.imshow(img)\n",
|
229 |
+
" plt.grid(None)\n",
|
230 |
+
" plt.axis('off')"
|
231 |
+
]
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"execution_count": null,
|
236 |
+
"metadata": {
|
237 |
+
"id": "Mejs17hg7Gim"
|
238 |
+
},
|
239 |
+
"outputs": [],
|
240 |
+
"source": [
|
241 |
+
"for i in range(3):\n",
|
242 |
+
" load_random_img(base_ds, city_classes)"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"cell_type": "code",
|
247 |
+
"execution_count": null,
|
248 |
+
"metadata": {
|
249 |
+
"id": "4x9dpaIM7Gim"
|
250 |
+
},
|
251 |
+
"outputs": [],
|
252 |
+
"source": [
|
253 |
+
"batch_size = 128\n",
|
254 |
+
"img_height, img_width = 175, 175\n",
|
255 |
+
"input_shape = (img_height, img_width, 3)"
|
256 |
+
]
|
257 |
+
},
|
258 |
+
{
|
259 |
+
"cell_type": "markdown",
|
260 |
+
"metadata": {
|
261 |
+
"id": "lEiaPL5a7Gim"
|
262 |
+
},
|
263 |
+
"source": [
|
264 |
+
"### **Data Pre-processing**"
|
265 |
+
]
|
266 |
+
},
|
267 |
+
{
|
268 |
+
"cell_type": "code",
|
269 |
+
"execution_count": null,
|
270 |
+
"metadata": {
|
271 |
+
"id": "eER-2oNF7Gin"
|
272 |
+
},
|
273 |
+
"outputs": [],
|
274 |
+
"source": [
|
275 |
+
"datagen = ImageDataGenerator(rescale=1./255)"
|
276 |
+
]
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"cell_type": "code",
|
280 |
+
"execution_count": null,
|
281 |
+
"metadata": {
|
282 |
+
"id": "lWozskns7Gin"
|
283 |
+
},
|
284 |
+
"outputs": [],
|
285 |
+
"source": [
|
286 |
+
"train_ds = datagen.flow_from_directory(\n",
|
287 |
+
" 'imgs/train',\n",
|
288 |
+
" target_size = (img_height, img_width),\n",
|
289 |
+
" batch_size = batch_size,\n",
|
290 |
+
" subset = \"training\",\n",
|
291 |
+
" class_mode='categorical')\n",
|
292 |
+
"\n",
|
293 |
+
"val_ds = datagen.flow_from_directory(\n",
|
294 |
+
" 'imgs/val',\n",
|
295 |
+
" target_size = (img_height, img_width),\n",
|
296 |
+
" batch_size = batch_size,\n",
|
297 |
+
" class_mode='categorical',\n",
|
298 |
+
" shuffle=False)\n",
|
299 |
+
"\n",
|
300 |
+
"test_ds = datagen.flow_from_directory(\n",
|
301 |
+
" 'imgs/test',\n",
|
302 |
+
" target_size = (img_height, img_width),\n",
|
303 |
+
" batch_size = batch_size,\n",
|
304 |
+
" class_mode='categorical',\n",
|
305 |
+
" shuffle=False)"
|
306 |
+
]
|
307 |
+
},
|
308 |
+
{
|
309 |
+
"cell_type": "code",
|
310 |
+
"execution_count": null,
|
311 |
+
"metadata": {
|
312 |
+
"id": "F4Q9lfcU7Gin"
|
313 |
+
},
|
314 |
+
"outputs": [],
|
315 |
+
"source": [
|
316 |
+
"def plot_train_history(history):\n",
|
317 |
+
" plt.figure(figsize=(15,5))\n",
|
318 |
+
" plt.subplot(1,2,1)\n",
|
319 |
+
" plt.plot(history.history['accuracy'])\n",
|
320 |
+
" plt.plot(history.history['val_accuracy'])\n",
|
321 |
+
" plt.title('Model accuracy')\n",
|
322 |
+
" plt.ylabel('accuracy')\n",
|
323 |
+
" plt.xlabel('epoch')\n",
|
324 |
+
" plt.legend(['train', 'validation'], loc='upper left')\n",
|
325 |
+
"\n",
|
326 |
+
" plt.subplot(1,2,2)\n",
|
327 |
+
" plt.plot(history.history['loss'])\n",
|
328 |
+
" plt.plot(history.history['val_loss'])\n",
|
329 |
+
" plt.title('Model loss')\n",
|
330 |
+
" plt.ylabel('loss')\n",
|
331 |
+
" plt.xlabel('epoch')\n",
|
332 |
+
" plt.legend(['train', 'validation'], loc='upper left')\n",
|
333 |
+
" plt.show()"
|
334 |
+
]
|
335 |
+
},
|
336 |
+
{
|
337 |
+
"cell_type": "markdown",
|
338 |
+
"metadata": {
|
339 |
+
"id": "7AmkjAds7Gin"
|
340 |
+
},
|
341 |
+
"source": [
|
342 |
+
"## **Vanilla CNN Model**"
|
343 |
+
]
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"cell_type": "code",
|
347 |
+
"execution_count": null,
|
348 |
+
"metadata": {
|
349 |
+
"id": "mrzY1vc17Gin"
|
350 |
+
},
|
351 |
+
"outputs": [],
|
352 |
+
"source": [
|
353 |
+
"model_vanilla = tf.keras.Sequential([\n",
|
354 |
+
" tf.keras.layers.Conv2D(32,(3,3), activation='relu', input_shape=input_shape),\n",
|
355 |
+
" tf.keras.layers.BatchNormalization(),\n",
|
356 |
+
" tf.keras.layers.Conv2D(32,(3,3),activation='relu',padding='same'),\n",
|
357 |
+
" tf.keras.layers.BatchNormalization(axis = 3),\n",
|
358 |
+
" tf.keras.layers.MaxPooling2D(pool_size=(2,2),padding='same'),\n",
|
359 |
+
" tf.keras.layers.Dropout(0.3),\n",
|
360 |
+
"\n",
|
361 |
+
" tf.keras.layers.Conv2D(64,(3,3),activation='relu',padding='same'),\n",
|
362 |
+
" tf.keras.layers.BatchNormalization(),\n",
|
363 |
+
" tf.keras.layers.Conv2D(64,(3,3),activation='relu',padding='same'),\n",
|
364 |
+
" tf.keras.layers.BatchNormalization(axis = 3),\n",
|
365 |
+
" tf.keras.layers.MaxPooling2D(pool_size=(2,2),padding='same'),\n",
|
366 |
+
" tf.keras.layers.Dropout(0.3),\n",
|
367 |
+
"\n",
|
368 |
+
" tf.keras.layers.Conv2D(128,(3,3),activation='relu',padding='same'),\n",
|
369 |
+
" tf.keras.layers.BatchNormalization(),\n",
|
370 |
+
" tf.keras.layers.Conv2D(128,(3,3),activation='relu',padding='same'),\n",
|
371 |
+
" tf.keras.layers.BatchNormalization(axis = 3),\n",
|
372 |
+
" tf.keras.layers.MaxPooling2D(pool_size=(2,2),padding='same'),\n",
|
373 |
+
" tf.keras.layers.Dropout(0.5),\n",
|
374 |
+
"\n",
|
375 |
+
" tf.keras.layers.Flatten(),\n",
|
376 |
+
" tf.keras.layers.Dense(512, activation='relu'),\n",
|
377 |
+
" tf.keras.layers.BatchNormalization(),\n",
|
378 |
+
" tf.keras.layers.Dropout(0.5),\n",
|
379 |
+
" tf.keras.layers.Dense(128, activation='relu'),\n",
|
380 |
+
" tf.keras.layers.Dropout(0.25),\n",
|
381 |
+
" tf.keras.layers.Dense(5, activation='softmax')\n",
|
382 |
+
"])"
|
383 |
+
]
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"cell_type": "code",
|
387 |
+
"execution_count": null,
|
388 |
+
"metadata": {
|
389 |
+
"id": "U8KLpKJU7Gin"
|
390 |
+
},
|
391 |
+
"outputs": [],
|
392 |
+
"source": [
|
393 |
+
"model_vanilla.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
394 |
+
"model_vanilla.summary()"
|
395 |
+
]
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"cell_type": "markdown",
|
399 |
+
"metadata": {
|
400 |
+
"id": "uUBYpTCi7Gin"
|
401 |
+
},
|
402 |
+
"source": [
|
403 |
+
"## **Callbacks**"
|
404 |
+
]
|
405 |
+
},
|
406 |
+
{
|
407 |
+
"cell_type": "code",
|
408 |
+
"execution_count": null,
|
409 |
+
"metadata": {
|
410 |
+
"id": "5FEvu8Lv7Gin"
|
411 |
+
},
|
412 |
+
"outputs": [],
|
413 |
+
"source": [
|
414 |
+
"models_dir = \"saved_models\"\n",
|
415 |
+
"if not os.path.exists(models_dir):\n",
|
416 |
+
" os.makedirs(models_dir)\n",
|
417 |
+
"\n",
|
418 |
+
"checkpointer = ModelCheckpoint(filepath='saved_models/model_vanilla.hdf5',\n",
|
419 |
+
" monitor='val_accuracy', mode='max',\n",
|
420 |
+
" verbose=1, save_best_only=True)\n",
|
421 |
+
"early_stopping = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=3)\n",
|
422 |
+
"reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,patience=2, min_lr=0.001)\n",
|
423 |
+
"callbacks=[early_stopping, reduce_lr, checkpointer]"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"cell_type": "code",
|
428 |
+
"execution_count": null,
|
429 |
+
"metadata": {
|
430 |
+
"id": "KcIjH0kt7Gin"
|
431 |
+
},
|
432 |
+
"outputs": [],
|
433 |
+
"source": [
|
434 |
+
"history1 = model_vanilla.fit(train_ds, epochs = 40, validation_data = val_ds, callbacks=callbacks)"
|
435 |
+
]
|
436 |
+
},
|
437 |
+
{
|
438 |
+
"cell_type": "code",
|
439 |
+
"execution_count": null,
|
440 |
+
"metadata": {
|
441 |
+
"id": "ZkstY19-7Gio"
|
442 |
+
},
|
443 |
+
"outputs": [],
|
444 |
+
"source": [
|
445 |
+
"model_vanilla.save(\"model1\")\n",
|
446 |
+
"model_vanilla.load_weights('saved_models/model_vanilla.hdf5')\n",
|
447 |
+
"plot_train_history(history1)"
|
448 |
+
]
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"cell_type": "markdown",
|
452 |
+
"metadata": {
|
453 |
+
"id": "4AVhC3Gu7Gio"
|
454 |
+
},
|
455 |
+
"source": [
|
456 |
+
"## **Model Evaluation of Vanilla CNN**"
|
457 |
+
]
|
458 |
+
},
|
459 |
+
{
|
460 |
+
"cell_type": "code",
|
461 |
+
"execution_count": null,
|
462 |
+
"metadata": {
|
463 |
+
"id": "jzx2cCef7Gio"
|
464 |
+
},
|
465 |
+
"outputs": [],
|
466 |
+
"source": [
|
467 |
+
"score1 = model_vanilla.evaluate(test_ds, verbose=1)"
|
468 |
+
]
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"cell_type": "code",
|
472 |
+
"execution_count": null,
|
473 |
+
"metadata": {
|
474 |
+
"id": "pSYggqLK7Gio"
|
475 |
+
},
|
476 |
+
"outputs": [],
|
477 |
+
"source": [
|
478 |
+
"from sklearn.metrics import classification_report, confusion_matrix\n",
|
479 |
+
"\n",
|
480 |
+
"Y_pred = model_vanilla.predict(test_ds)"
|
481 |
+
]
|
482 |
+
},
|
483 |
+
{
|
484 |
+
"cell_type": "code",
|
485 |
+
"execution_count": null,
|
486 |
+
"metadata": {
|
487 |
+
"id": "zd8-1pAC7Gio"
|
488 |
+
},
|
489 |
+
"outputs": [],
|
490 |
+
"source": [
|
491 |
+
"y_pred = np.argmax(Y_pred, axis=1)\n",
|
492 |
+
"confusion_mtx = confusion_matrix(y_pred, test_ds.classes)\n",
|
493 |
+
"f,ax = plt.subplots(figsize=(12, 12))\n",
|
494 |
+
"sns.heatmap(confusion_mtx, annot=True,\n",
|
495 |
+
" linewidths=0.01,\n",
|
496 |
+
" linecolor=\"white\",\n",
|
497 |
+
" fmt= '.1f',ax=ax,)\n",
|
498 |
+
"sns.color_palette(\"rocket\", as_cmap=True)\n",
|
499 |
+
"\n",
|
500 |
+
"plt.xlabel(\"Predicted Label\")\n",
|
501 |
+
"plt.ylabel(\"True Label\")\n",
|
502 |
+
"ax.xaxis.set_ticklabels(test_ds.class_indices)\n",
|
503 |
+
"ax.yaxis.set_ticklabels(city_classes)\n",
|
504 |
+
"plt.title(\"Confusion Matrix\")\n",
|
505 |
+
"plt.show()"
|
506 |
+
]
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"cell_type": "code",
|
510 |
+
"execution_count": null,
|
511 |
+
"metadata": {
|
512 |
+
"id": "YE6j5ex97Gio"
|
513 |
+
},
|
514 |
+
"outputs": [],
|
515 |
+
"source": [
|
516 |
+
"report1 = classification_report(test_ds.classes, y_pred, target_names=city_classes, output_dict=True)\n",
|
517 |
+
"df1 = pd.DataFrame(report1).transpose()\n",
|
518 |
+
"df1"
|
519 |
+
]
|
520 |
+
},
|
521 |
+
{
|
522 |
+
"cell_type": "markdown",
|
523 |
+
"metadata": {
|
524 |
+
"id": "SS8QOBdy7Gio"
|
525 |
+
},
|
526 |
+
"source": [
|
527 |
+
"## **Transfer Learning**"
|
528 |
+
]
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"cell_type": "code",
|
532 |
+
"execution_count": null,
|
533 |
+
"metadata": {
|
534 |
+
"id": "0sbFu6VZ7Gio"
|
535 |
+
},
|
536 |
+
"outputs": [],
|
537 |
+
"source": [
|
538 |
+
"vgg16 = VGG16(weights=\"imagenet\", include_top=False, input_shape=input_shape)\n",
|
539 |
+
"vgg16.trainable = False\n",
|
540 |
+
"inputs = tf.keras.Input(input_shape)\n",
|
541 |
+
"x = vgg16(inputs, training=False)\n",
|
542 |
+
"x = tf.keras.layers.GlobalAveragePooling2D()(x)\n",
|
543 |
+
"x = tf.keras.layers.Dense(1024, activation='relu')(x)\n",
|
544 |
+
"x = tf.keras.layers.Dense(5, activation='softmax')(x)\n",
|
545 |
+
"model_vgg16 = tf.keras.Model(inputs, x)"
|
546 |
+
]
|
547 |
+
},
|
548 |
+
{
|
549 |
+
"cell_type": "code",
|
550 |
+
"execution_count": null,
|
551 |
+
"metadata": {
|
552 |
+
"id": "IrQTnBef7Gip"
|
553 |
+
},
|
554 |
+
"outputs": [],
|
555 |
+
"source": [
|
556 |
+
"model_vgg16.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])\n",
|
557 |
+
"model_vgg16.summary()"
|
558 |
+
]
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"cell_type": "code",
|
562 |
+
"execution_count": null,
|
563 |
+
"metadata": {
|
564 |
+
"id": "nMaw_y4y7Gip"
|
565 |
+
},
|
566 |
+
"outputs": [],
|
567 |
+
"source": [
|
568 |
+
"checkpointer = ModelCheckpoint(filepath='saved_models/model_vgg16.hdf5',\n",
|
569 |
+
" monitor='val_accuracy', mode='max',\n",
|
570 |
+
" verbose=1, save_best_only=True)\n",
|
571 |
+
"early_stopping = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=3)\n",
|
572 |
+
"reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,patience=2, min_lr=0.001)\n",
|
573 |
+
"callbacks=[early_stopping, reduce_lr, checkpointer]"
|
574 |
+
]
|
575 |
+
},
|
576 |
+
{
|
577 |
+
"cell_type": "code",
|
578 |
+
"execution_count": null,
|
579 |
+
"metadata": {
|
580 |
+
"id": "XscbiiWE7Gip"
|
581 |
+
},
|
582 |
+
"outputs": [],
|
583 |
+
"source": [
|
584 |
+
"history2 = model_vgg16.fit(train_ds, epochs = 40, validation_data = val_ds, callbacks=callbacks)"
|
585 |
+
]
|
586 |
+
},
|
587 |
+
{
|
588 |
+
"cell_type": "code",
|
589 |
+
"execution_count": null,
|
590 |
+
"metadata": {
|
591 |
+
"id": "toiVgYCR7Gip"
|
592 |
+
},
|
593 |
+
"outputs": [],
|
594 |
+
"source": [
|
595 |
+
"model_vgg16.load_weights('saved_models/model_vgg16.hdf5')"
|
596 |
+
]
|
597 |
+
},
|
598 |
+
{
|
599 |
+
"cell_type": "code",
|
600 |
+
"execution_count": null,
|
601 |
+
"metadata": {
|
602 |
+
"id": "46M_EVvE7Gip"
|
603 |
+
},
|
604 |
+
"outputs": [],
|
605 |
+
"source": [
|
606 |
+
"plot_train_history(history2)"
|
607 |
+
]
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"cell_type": "code",
|
611 |
+
"execution_count": null,
|
612 |
+
"metadata": {
|
613 |
+
"id": "PzhAvIEE7Gip"
|
614 |
+
},
|
615 |
+
"outputs": [],
|
616 |
+
"source": [
|
617 |
+
"score2 = model_vgg16.evaluate(test_ds, verbose=1)\n",
|
618 |
+
"print(f'Model 1 Vanilla Loss: {score1[0]}, Accuracy: {score1[1]*100}')\n",
|
619 |
+
"print(f'Model 2 VGG16 Loss: {score2[0]}, Accuracy: {score2[1]*100}')\n",
|
620 |
+
"model_vgg16.save(\"model2\")"
|
621 |
+
]
|
622 |
+
},
|
623 |
+
{
|
624 |
+
"cell_type": "markdown",
|
625 |
+
"metadata": {
|
626 |
+
"id": "e1Jmu8wQ7Giq"
|
627 |
+
},
|
628 |
+
"source": [
|
629 |
+
"## **Fine Tuning**"
|
630 |
+
]
|
631 |
+
},
|
632 |
+
{
|
633 |
+
"cell_type": "code",
|
634 |
+
"execution_count": null,
|
635 |
+
"metadata": {
|
636 |
+
"id": "IiEIjnKp7Giv"
|
637 |
+
},
|
638 |
+
"outputs": [],
|
639 |
+
"source": [
|
640 |
+
"vgg16.trainable = True\n",
|
641 |
+
"model_vgg16.compile(optimizer=keras.optimizers.Adam(1e-5),\n",
|
642 |
+
" loss='categorical_crossentropy', metrics=['accuracy'])"
|
643 |
+
]
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"cell_type": "code",
|
647 |
+
"execution_count": null,
|
648 |
+
"metadata": {
|
649 |
+
"id": "D52hK12o7Giv"
|
650 |
+
},
|
651 |
+
"outputs": [],
|
652 |
+
"source": [
|
653 |
+
"history3 = model_vgg16.fit(train_ds, epochs = 40, validation_data = val_ds, callbacks=callbacks)"
|
654 |
+
]
|
655 |
+
},
|
656 |
+
{
|
657 |
+
"cell_type": "code",
|
658 |
+
"execution_count": null,
|
659 |
+
"metadata": {
|
660 |
+
"id": "bpEvB7Ud7Giv"
|
661 |
+
},
|
662 |
+
"outputs": [],
|
663 |
+
"source": [
|
664 |
+
"model_vgg16.load_weights('saved_models/model_vgg16.hdf5')\n",
|
665 |
+
"model_vgg16.save(\"model3\")"
|
666 |
+
]
|
667 |
+
},
|
668 |
+
{
|
669 |
+
"cell_type": "markdown",
|
670 |
+
"metadata": {
|
671 |
+
"id": "uYUBzEgZ7Giv"
|
672 |
+
},
|
673 |
+
"source": [
|
674 |
+
"## **Final Evaluation**"
|
675 |
+
]
|
676 |
+
},
|
677 |
+
{
|
678 |
+
"cell_type": "code",
|
679 |
+
"execution_count": null,
|
680 |
+
"metadata": {
|
681 |
+
"id": "8qMXiAQg7Giv"
|
682 |
+
},
|
683 |
+
"outputs": [],
|
684 |
+
"source": [
|
685 |
+
"score3 = model_vgg16.evaluate(test_ds, verbose=1)\n",
|
686 |
+
"print(f'Model 1 Vanilla Loss: {score1[0]}, Accuracy: {score1[1]*100}')\n",
|
687 |
+
"print(f'Model 2 VGG16 Loss: {score2[0]}, Accuracy: {score2[1]*100}')\n",
|
688 |
+
"print(f'Model 2 VGG16 Fine-tuned Loss: {score3[0]}, Accuracy: {score3[1]*100}')"
|
689 |
+
]
|
690 |
+
},
|
691 |
+
{
|
692 |
+
"cell_type": "code",
|
693 |
+
"execution_count": null,
|
694 |
+
"metadata": {
|
695 |
+
"id": "c-yIMsfC7Giv"
|
696 |
+
},
|
697 |
+
"outputs": [],
|
698 |
+
"source": [
|
699 |
+
"Y_pred = model_vgg16.predict(test_ds)"
|
700 |
+
]
|
701 |
+
},
|
702 |
+
{
|
703 |
+
"cell_type": "code",
|
704 |
+
"execution_count": null,
|
705 |
+
"metadata": {
|
706 |
+
"id": "h75tyWjY7Giv"
|
707 |
+
},
|
708 |
+
"outputs": [],
|
709 |
+
"source": [
|
710 |
+
"y_pred = np.argmax(Y_pred, axis=1)\n",
|
711 |
+
"confusion_mtx = confusion_matrix(y_pred, test_ds.classes)\n",
|
712 |
+
"f,ax = plt.subplots(figsize=(12, 12))\n",
|
713 |
+
"sns.heatmap(confusion_mtx, annot=True,\n",
|
714 |
+
" linewidths=0.01,\n",
|
715 |
+
" linecolor=\"white\",\n",
|
716 |
+
" fmt= '.1f',ax=ax,)\n",
|
717 |
+
"sns.color_palette(\"rocket\", as_cmap=True)\n",
|
718 |
+
"\n",
|
719 |
+
"plt.xlabel(\"Predicted Label\")\n",
|
720 |
+
"plt.ylabel(\"True Label\")\n",
|
721 |
+
"ax.xaxis.set_ticklabels(test_ds.class_indices)\n",
|
722 |
+
"ax.yaxis.set_ticklabels(city_classes)\n",
|
723 |
+
"plt.title(\"Confusion Matrix\")\n",
|
724 |
+
"plt.show()"
|
725 |
+
]
|
726 |
+
},
|
727 |
+
{
|
728 |
+
"cell_type": "code",
|
729 |
+
"execution_count": null,
|
730 |
+
"metadata": {
|
731 |
+
"id": "lT-5Hwdz7Giw"
|
732 |
+
},
|
733 |
+
"outputs": [],
|
734 |
+
"source": [
|
735 |
+
"report2 = classification_report(test_ds.classes, y_pred, target_names=city_classes, output_dict=True)\n",
|
736 |
+
"df2 = pd.DataFrame(report1).transpose()\n",
|
737 |
+
"df2"
|
738 |
+
]
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"cell_type": "code",
|
742 |
+
"execution_count": null,
|
743 |
+
"metadata": {
|
744 |
+
"id": "8TBoFOlT7Giw"
|
745 |
+
},
|
746 |
+
"outputs": [],
|
747 |
+
"source": [
|
748 |
+
"plt.figure(figsize=(100, 100))\n",
|
749 |
+
"x, label= train_ds.next()\n",
|
750 |
+
"for i in range(25):\n",
|
751 |
+
" plt.subplot(5, 5, i+1)\n",
|
752 |
+
" plt.imshow(x[i])\n",
|
753 |
+
" result = np.where(label[i]==1)\n",
|
754 |
+
" predict = model_vgg16(tf.expand_dims(x[i], 0))\n",
|
755 |
+
" score = tf.nn.softmax(predict[0])\n",
|
756 |
+
" score_label = city_classes[np.argmax(score)]\n",
|
757 |
+
" plt.title(f'Truth: {city_classes[result[0][0]]}\\nPrediction:{score_label}')\n",
|
758 |
+
" plt.axis(False)"
|
759 |
+
]
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"cell_type": "code",
|
763 |
+
"execution_count": null,
|
764 |
+
"metadata": {
|
765 |
+
"id": "UlB0X2Bu-z8T"
|
766 |
+
},
|
767 |
+
"outputs": [],
|
768 |
+
"source": [
|
769 |
+
"model_vgg16.save(\"/content/drive/MyDrive/model\")\n",
|
770 |
+
"# Assuming your model is named model_vgg16\n",
|
771 |
+
"model_vgg16.save(\"/content/drive/MyDrive/tensorflow\", save_format='tf')\n"
|
772 |
+
]
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"cell_type": "code",
|
776 |
+
"execution_count": null,
|
777 |
+
"metadata": {
|
778 |
+
"colab": {
|
779 |
+
"base_uri": "https://localhost:8080/"
|
780 |
+
},
|
781 |
+
"id": "Ui__qIcFG_IA",
|
782 |
+
"outputId": "04f422be-7522-45e3-b386-e00bf351a4c8"
|
783 |
+
},
|
784 |
+
"outputs": [
|
785 |
+
{
|
786 |
+
"name": "stdout",
|
787 |
+
"output_type": "stream",
|
788 |
+
"text": [
|
789 |
+
"Found 1875 images belonging to 5 classes.\n",
|
790 |
+
"59/59 [==============================] - 14s 182ms/step - loss: 1.4103 - accuracy: 0.6363\n",
|
791 |
+
"Test loss: 1.4102574586868286\n",
|
792 |
+
"Test accuracy: 0.6362666487693787\n"
|
793 |
+
]
|
794 |
+
}
|
795 |
+
],
|
796 |
+
"source": [
|
797 |
+
"test_datagen = ImageDataGenerator(rescale=1./255)\n",
|
798 |
+
"test_generator = test_datagen.flow_from_directory(\n",
|
799 |
+
" '/content/imgs/test',\n",
|
800 |
+
" target_size=(175, 175),\n",
|
801 |
+
" batch_size=32,\n",
|
802 |
+
" class_mode='categorical'\n",
|
803 |
+
")\n",
|
804 |
+
"\n",
|
805 |
+
"test_loss, test_accuracy = model_vgg16.evaluate(test_generator, steps=len(test_generator))\n",
|
806 |
+
"print('Test loss:', test_loss)\n",
|
807 |
+
"print('Test accuracy:', test_accuracy)"
|
808 |
+
]
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"cell_type": "markdown",
|
812 |
+
"source": [
|
813 |
+
"## **Testing single image**"
|
814 |
+
],
|
815 |
+
"metadata": {
|
816 |
+
"id": "gM7karcDFUq3"
|
817 |
+
}
|
818 |
+
},
|
819 |
+
{
|
820 |
+
"cell_type": "code",
|
821 |
+
"execution_count": null,
|
822 |
+
"metadata": {
|
823 |
+
"colab": {
|
824 |
+
"base_uri": "https://localhost:8080/"
|
825 |
+
},
|
826 |
+
"id": "zqrovHxOHj8o",
|
827 |
+
"outputId": "9ddc9a80-c2a4-4526-c856-1146b884ce66"
|
828 |
+
},
|
829 |
+
"outputs": [
|
830 |
+
{
|
831 |
+
"name": "stderr",
|
832 |
+
"output_type": "stream",
|
833 |
+
"text": [
|
834 |
+
"WARNING:tensorflow:5 out of the last 19 calls to <function Model.make_predict_function.<locals>.predict_function at 0x7a21dd0d7eb0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://www.tensorflow.org/guide/function#controlling_retracing and https://www.tensorflow.org/api_docs/python/tf/function for more details.\n"
|
835 |
+
]
|
836 |
+
},
|
837 |
+
{
|
838 |
+
"name": "stdout",
|
839 |
+
"output_type": "stream",
|
840 |
+
"text": [
|
841 |
+
"1/1 [==============================] - 0s 440ms/step\n",
|
842 |
+
"Predicted class: Kolkata\n",
|
843 |
+
"Accuracy: 0.8562558\n"
|
844 |
+
]
|
845 |
+
}
|
846 |
+
],
|
847 |
+
"source": [
|
848 |
+
"# import tensorflow.keras as keras\n",
|
849 |
+
"# from tensorflow.keras.models import load_model\n",
|
850 |
+
"# from tensorflow.keras.preprocessing import image\n",
|
851 |
+
"# import numpy as np\n",
|
852 |
+
"\n",
|
853 |
+
"# model = load_model('/content/model3')\n",
|
854 |
+
"\n",
|
855 |
+
"\n",
|
856 |
+
"\n",
|
857 |
+
"# # Load and preprocess the input image\n",
|
858 |
+
"# img_path = '/content/Citeisall/Kolkata/Kolkata-Test (10).jpg'\n",
|
859 |
+
"# img = image.load_img(img_path, target_size=(175,175))\n",
|
860 |
+
"# img = image.img_to_array(img)\n",
|
861 |
+
"# img = np.expand_dims(img, axis=0)\n",
|
862 |
+
"# img = img / 255.0\n",
|
863 |
+
"\n",
|
864 |
+
"# # Make predictions on the input image\n",
|
865 |
+
"# predictions = model.predict(img)\n",
|
866 |
+
"# class_labels = ['Ahmedabad', 'Delhi', 'Kerala', 'Kolkata', 'Mumbai']\n",
|
867 |
+
"\n",
|
868 |
+
"# # Set the threshold for minimum accuracy\n",
|
869 |
+
"# threshold = 0.0\n",
|
870 |
+
"\n",
|
871 |
+
"# # Get the predicted class label and accuracy\n",
|
872 |
+
"# predicted_class_index = np.argmax(predictions)\n",
|
873 |
+
"# predicted_class_label = class_labels[predicted_class_index]\n",
|
874 |
+
"# accuracy = predictions[0][predicted_class_index]\n",
|
875 |
+
"\n",
|
876 |
+
"# # Check if accuracy is below the threshold for all classes\n",
|
877 |
+
"# if all(accuracy < threshold for accuracy in predictions[0]):\n",
|
878 |
+
"# print(\"This location is not in our database.\")\n",
|
879 |
+
"# else:\n",
|
880 |
+
"# print('Predicted class:', predicted_class_label)\n",
|
881 |
+
"# print('Accuracy:', accuracy)\n"
|
882 |
+
]
|
883 |
+
},
|
884 |
+
{
|
885 |
+
"cell_type": "markdown",
|
886 |
+
"source": [
|
887 |
+
"## **Visulization**\n",
|
888 |
+
"\n",
|
889 |
+
"---\n",
|
890 |
+
"\n"
|
891 |
+
],
|
892 |
+
"metadata": {
|
893 |
+
"id": "QYj3LdqUFGn-"
|
894 |
+
}
|
895 |
+
},
|
896 |
+
{
|
897 |
+
"cell_type": "code",
|
898 |
+
"execution_count": null,
|
899 |
+
"metadata": {
|
900 |
+
"id": "ekP5VUgYISA-"
|
901 |
+
},
|
902 |
+
"outputs": [],
|
903 |
+
"source": [
|
904 |
+
"# import numpy as np\n",
|
905 |
+
"# import matplotlib.pyplot as plt\n",
|
906 |
+
"# import seaborn as sns\n",
|
907 |
+
"\n",
|
908 |
+
"# # Sample data from the classification report you provided\n",
|
909 |
+
"# labels = [\"Ahmedabad\", \"Delhi\", \"Kerala\", \"Kolkata\", \"Mumbai\"]\n",
|
910 |
+
"# precision = [0.85, 0.60, 0.64, 0.58, 0.55]\n",
|
911 |
+
"# recall = [0.84, 0.65, 0.66, 0.58, 0.49]\n",
|
912 |
+
"# f1 = [0.85, 0.62, 0.65, 0.58, 0.52]\n",
|
913 |
+
"\n",
|
914 |
+
"# # Bar Plot\n",
|
915 |
+
"# plt.figure(figsize=(10, 5))\n",
|
916 |
+
"# barWidth = 0.25\n",
|
917 |
+
"# r1 = np.arange(len(precision))\n",
|
918 |
+
"# r2 = [x + barWidth for x in r1]\n",
|
919 |
+
"# r3 = [x + barWidth for x in r2]\n",
|
920 |
+
"# plt.bar(r1, precision, color='b', width=barWidth, edgecolor='grey', label='precision')\n",
|
921 |
+
"# plt.bar(r2, recall, color='r', width=barWidth, edgecolor='grey', label='recall')\n",
|
922 |
+
"# plt.bar(r3, f1, color='g', width=barWidth, edgecolor='grey', label='f1-score')\n",
|
923 |
+
"# plt.xlabel('Cities', fontweight='bold')\n",
|
924 |
+
"# plt.xticks([r + barWidth for r in range(len(precision))], labels)\n",
|
925 |
+
"# plt.legend()\n",
|
926 |
+
"# plt.show()\n",
|
927 |
+
"\n",
|
928 |
+
"# # Heatmap\n",
|
929 |
+
"# df = {\n",
|
930 |
+
"# 'precision': precision,\n",
|
931 |
+
"# 'recall': recall,\n",
|
932 |
+
"# 'f1-score': f1\n",
|
933 |
+
"# }\n",
|
934 |
+
"# plt.figure(figsize=(10, 5))\n",
|
935 |
+
"# sns.heatmap([precision, recall, f1], yticklabels=[\"precision\", \"recall\", \"f1-score\"], xticklabels=labels, cmap=\"YlGnBu\", annot=True, fmt='.2g')\n",
|
936 |
+
"# plt.show()\n",
|
937 |
+
"\n",
|
938 |
+
"# # Spider (Radar) Plot\n",
|
939 |
+
"# angles = np.linspace(0, 2 * np.pi, len(labels), endpoint=False).tolist()\n",
|
940 |
+
"# precision += precision[:1]\n",
|
941 |
+
"# recall += recall[:1]\n",
|
942 |
+
"# f1 += f1[:1]\n",
|
943 |
+
"# angles += angles[:1]\n",
|
944 |
+
"# plt.figure(figsize=(10, 5))\n",
|
945 |
+
"# ax = plt.subplot(111, polar=True)\n",
|
946 |
+
"# ax.fill(angles, precision, color='b', alpha=0.25)\n",
|
947 |
+
"# ax.fill(angles, recall, color='r', alpha=0.25)\n",
|
948 |
+
"# ax.fill(angles, f1, color='g', alpha=0.25)\n",
|
949 |
+
"# ax.set_theta_offset(np.pi / 2)\n",
|
950 |
+
"# ax.set_theta_direction(-1)\n",
|
951 |
+
"# plt.xticks(angles[:-1], labels)\n",
|
952 |
+
"# ax.set_rlabel_position(30)\n",
|
953 |
+
"# plt.yticks([0.2, 0.4, 0.6, 0.8], [\"0.2\", \"0.4\", \"0.6\", \"0.8\"], color=\"grey\", size=12)\n",
|
954 |
+
"# plt.ylim(0, 1)\n",
|
955 |
+
"# ax.plot(angles, precision, color='b', linewidth=2, linestyle='solid', label='precision')\n",
|
956 |
+
"# ax.plot(angles, recall, color='r', linewidth=2, linestyle='solid', label='recall')\n",
|
957 |
+
"# ax.plot(angles, f1, color='g', linewidth=2, linestyle='solid', label='f1-score')\n",
|
958 |
+
"# ax.fill(angles, precision, color='b', alpha=0.4)\n",
|
959 |
+
"# ax.fill(angles, recall, color='r', alpha=0.4)\n",
|
960 |
+
"# ax.fill(angles, f1, color='g', alpha=0.4)\n",
|
961 |
+
"# plt.legend(loc=\"upper right\", bbox_to_anchor=(0.1, 0.1))\n",
|
962 |
+
"# plt.show()\n"
|
963 |
+
]
|
964 |
+
},
|
965 |
+
{
|
966 |
+
"cell_type": "code",
|
967 |
+
"source": [
|
968 |
+
"# Import necessary libraries\n",
|
969 |
+
"import numpy as np\n",
|
970 |
+
"from keras.models import load_model\n",
|
971 |
+
"from keras.preprocessing.image import ImageDataGenerator\n",
|
972 |
+
"from sklearn.metrics import classification_report\n",
|
973 |
+
"import matplotlib.pyplot as plt\n",
|
974 |
+
"import pandas as pd\n",
|
975 |
+
"\n",
|
976 |
+
"# Load the pre-trained model\n",
|
977 |
+
"model = load_model('/content/drive/MyDrive/model.h5')\n",
|
978 |
+
"\n",
|
979 |
+
"# Preprocess the test data\n",
|
980 |
+
"test_datagen = ImageDataGenerator(rescale=1./255) # Assuming you rescaled your images during training\n",
|
981 |
+
"test_dir = '/content/imgs/test'\n",
|
982 |
+
"test_generator = test_datagen.flow_from_directory(\n",
|
983 |
+
" test_dir,\n",
|
984 |
+
" target_size=(175, 175), # Adjust if you used a different input size during training\n",
|
985 |
+
" batch_size=1,\n",
|
986 |
+
" class_mode='categorical',\n",
|
987 |
+
" shuffle=False\n",
|
988 |
+
")\n",
|
989 |
+
"\n",
|
990 |
+
"# Predict classes using the model\n",
|
991 |
+
"predictions = model.predict(test_generator, steps=test_generator.n, verbose=1)\n",
|
992 |
+
"predicted_classes = np.argmax(predictions, axis=1)\n",
|
993 |
+
"\n",
|
994 |
+
"# Get true labels and class labels\n",
|
995 |
+
"true_classes = test_generator.classes\n",
|
996 |
+
"class_labels = list(test_generator.class_indices.keys())\n",
|
997 |
+
"\n",
|
998 |
+
"# Generate the classification report\n",
|
999 |
+
"report = classification_report(true_classes, predicted_classes, target_names=class_labels, output_dict=True)\n",
|
1000 |
+
"report_df = pd.DataFrame(report).transpose()\n",
|
1001 |
+
"\n",
|
1002 |
+
"# Plot the metrics in the report\n",
|
1003 |
+
"report_df[['precision', 'recall', 'f1-score']].drop(['accuracy', 'macro avg', 'weighted avg']).plot(kind='bar', figsize=(15, 7))\n",
|
1004 |
+
"plt.title('Classification Report Metrics')\n",
|
1005 |
+
"plt.ylabel('Score')\n",
|
1006 |
+
"plt.xticks(rotation=45)\n",
|
1007 |
+
"plt.ylim(0, 1)\n",
|
1008 |
+
"plt.grid(axis='y')\n",
|
1009 |
+
"plt.tight_layout()\n",
|
1010 |
+
"plt.show()\n",
|
1011 |
+
"\n",
|
1012 |
+
"# Import necessary libraries\n",
|
1013 |
+
"# import numpy as np\n",
|
1014 |
+
"# from keras.models import load_model\n",
|
1015 |
+
"# from keras.preprocessing.image import ImageDataGenerator\n",
|
1016 |
+
"# from sklearn.metrics import classification_report, confusion_matrix\n",
|
1017 |
+
"# import matplotlib.pyplot as plt\n",
|
1018 |
+
"# import seaborn as sns\n",
|
1019 |
+
"\n",
|
1020 |
+
"# # Load the pre-trained model\n",
|
1021 |
+
"# model = load_model('/content/drive/MyDrive/model.h5')\n",
|
1022 |
+
"\n",
|
1023 |
+
"# # Preprocess the test data\n",
|
1024 |
+
"# test_datagen = ImageDataGenerator(rescale=1./255) # Assuming you rescaled your images during training\n",
|
1025 |
+
"# test_dir = '/content/imgs/test'\n",
|
1026 |
+
"# test_generator = test_datagen.flow_from_directory(\n",
|
1027 |
+
"# test_dir,\n",
|
1028 |
+
"# target_size=(175, 175), # Adjust if you used a different input size during training\n",
|
1029 |
+
"# batch_size=1,\n",
|
1030 |
+
"# class_mode='categorical',\n",
|
1031 |
+
"# shuffle=False\n",
|
1032 |
+
"# )\n",
|
1033 |
+
"\n",
|
1034 |
+
"# # Predict classes using the model\n",
|
1035 |
+
"# predictions = model.predict(test_generator, steps=test_generator.n, verbose=1)\n",
|
1036 |
+
"# predicted_classes = np.argmax(predictions, axis=1)\n",
|
1037 |
+
"\n",
|
1038 |
+
"# # Get true labels and class labels\n",
|
1039 |
+
"# true_classes = test_generator.classes\n",
|
1040 |
+
"# class_labels = list(test_generator.class_indices.keys())\n",
|
1041 |
+
"\n",
|
1042 |
+
"# # Generate the classification report\n",
|
1043 |
+
"# report = classification_report(true_classes, predicted_classes, target_names=class_labels)\n",
|
1044 |
+
"# print(report)\n",
|
1045 |
+
"\n",
|
1046 |
+
"# # Generate the confusion matrix\n",
|
1047 |
+
"# confusion_mtx = confusion_matrix(true_classes, predicted_classes)\n",
|
1048 |
+
"\n",
|
1049 |
+
"# # Plot the heatmap using Seaborn\n",
|
1050 |
+
"# plt.figure(figsize=(10, 8))\n",
|
1051 |
+
"# sns.heatmap(confusion_mtx, annot=True, fmt='d', cmap='Blues',\n",
|
1052 |
+
"# xticklabels=class_labels,\n",
|
1053 |
+
"# yticklabels=class_labels)\n",
|
1054 |
+
"# plt.xlabel('Predicted Label')\n",
|
1055 |
+
"# plt.ylabel('True Label')\n",
|
1056 |
+
"# plt.title('Confusion Matrix')\n",
|
1057 |
+
"# plt.show()\n"
|
1058 |
+
],
|
1059 |
+
"metadata": {
|
1060 |
+
"id": "naosYJjSFmYA"
|
1061 |
+
},
|
1062 |
+
"execution_count": null,
|
1063 |
+
"outputs": []
|
1064 |
+
},
|
1065 |
+
{
|
1066 |
+
"cell_type": "code",
|
1067 |
+
"source": [],
|
1068 |
+
"metadata": {
|
1069 |
+
"id": "pM9HS2OxE4Ej"
|
1070 |
+
},
|
1071 |
+
"execution_count": null,
|
1072 |
+
"outputs": []
|
1073 |
+
}
|
1074 |
+
],
|
1075 |
+
"metadata": {
|
1076 |
+
"accelerator": "GPU",
|
1077 |
+
"colab": {
|
1078 |
+
"provenance": []
|
1079 |
+
},
|
1080 |
+
"kernelspec": {
|
1081 |
+
"display_name": "Python 3",
|
1082 |
+
"name": "python3"
|
1083 |
+
},
|
1084 |
+
"language_info": {
|
1085 |
+
"codemirror_mode": {
|
1086 |
+
"name": "ipython",
|
1087 |
+
"version": 3
|
1088 |
+
},
|
1089 |
+
"file_extension": ".py",
|
1090 |
+
"mimetype": "text/x-python",
|
1091 |
+
"name": "python",
|
1092 |
+
"nbconvert_exporter": "python",
|
1093 |
+
"pygments_lexer": "ipython3",
|
1094 |
+
"version": "3.6.4"
|
1095 |
+
}
|
1096 |
+
},
|
1097 |
+
"nbformat": 4,
|
1098 |
+
"nbformat_minor": 0
|
1099 |
+
}
|