--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-deu results: [] --- # speaker-segmentation-fine-tuned-callhome-deu This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome deu dataset. It achieves the following results on the evaluation set: - Loss: 0.3780 - Der: 0.1415 - False Alarm: 0.0724 - Missed Detection: 0.0490 - Confusion: 0.0201 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.4622 | 1.0 | 330 | 0.3844 | 0.1439 | 0.0653 | 0.0562 | 0.0223 | | 0.4306 | 2.0 | 660 | 0.4004 | 0.1519 | 0.0763 | 0.0515 | 0.0241 | | 0.4069 | 3.0 | 990 | 0.3775 | 0.1407 | 0.0707 | 0.0496 | 0.0204 | | 0.3949 | 4.0 | 1320 | 0.3771 | 0.1408 | 0.0710 | 0.0498 | 0.0200 | | 0.3879 | 5.0 | 1650 | 0.3780 | 0.1415 | 0.0724 | 0.0490 | 0.0201 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1