kamilakesbi commited on
Commit
c122778
1 Parent(s): aea5f49

End of training

Browse files
Files changed (2) hide show
  1. README.md +22 -17
  2. emissions.csv +2 -0
README.md CHANGED
@@ -1,8 +1,6 @@
1
  ---
2
- language:
3
- - jpn
4
- license: apache-2.0
5
- base_model: openai/whisper-small
6
  tags:
7
  - speaker-diarization
8
  - speaker-segmentation
@@ -19,17 +17,13 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  # speaker-segmentation-fine-tuned-callhome-jpn
21
 
22
- This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the diarizers-community/callhome dataset.
23
  It achieves the following results on the evaluation set:
24
- - eval_loss: 0.8263
25
- - eval_der: 0.2702
26
- - eval_false_alarm: 0.0280
27
- - eval_missed_detection: 0.1843
28
- - eval_confusion: 0.0579
29
- - eval_runtime: 80.4369
30
- - eval_samples_per_second: 8.64
31
- - eval_steps_per_second: 0.274
32
- - step: 0
33
 
34
  ## Model description
35
 
@@ -54,11 +48,22 @@ The following hyperparameters were used during training:
54
  - seed: 42
55
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
56
  - lr_scheduler_type: cosine
57
- - num_epochs: 5
 
 
 
 
 
 
 
 
 
 
 
58
 
59
  ### Framework versions
60
 
61
  - Transformers 4.40.0
62
- - Pytorch 2.2.1+cu121
63
- - Datasets 2.19.0
64
  - Tokenizers 0.19.1
 
1
  ---
2
+ license: mit
3
+ base_model: pyannote/segmentation-3.0
 
 
4
  tags:
5
  - speaker-diarization
6
  - speaker-segmentation
 
17
 
18
  # speaker-segmentation-fine-tuned-callhome-jpn
19
 
20
+ This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome jpn dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.5957
23
+ - Der: 0.1975
24
+ - False Alarm: 0.0777
25
+ - Missed Detection: 0.0713
26
+ - Confusion: 0.0485
 
 
 
 
27
 
28
  ## Model description
29
 
 
48
  - seed: 42
49
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
  - lr_scheduler_type: cosine
51
+ - num_epochs: 5.0
52
+
53
+ ### Training results
54
+
55
+ | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion |
56
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:|
57
+ | 0.5998 | 1.0 | 336 | 0.6155 | 0.2067 | 0.0726 | 0.0792 | 0.0549 |
58
+ | 0.578 | 2.0 | 672 | 0.6258 | 0.2086 | 0.0851 | 0.0691 | 0.0544 |
59
+ | 0.5431 | 3.0 | 1008 | 0.6054 | 0.2023 | 0.0830 | 0.0689 | 0.0505 |
60
+ | 0.5198 | 4.0 | 1344 | 0.5989 | 0.1984 | 0.0762 | 0.0729 | 0.0494 |
61
+ | 0.5211 | 5.0 | 1680 | 0.5957 | 0.1975 | 0.0777 | 0.0713 | 0.0485 |
62
+
63
 
64
  ### Framework versions
65
 
66
  - Transformers 4.40.0
67
+ - Pytorch 2.2.2+cu121
68
+ - Datasets 2.18.0
69
  - Tokenizers 0.19.1
emissions.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ timestamp,experiment_id,project_name,duration,emissions,energy_consumed,country_name,country_iso_code,region,on_cloud,cloud_provider,cloud_region
2
+ 2024-04-20T16:46:40,f247ee22-7a72-4405-80cf-efae1836a21e,codecarbon,220.32588934898376,0.0010399341439828672,0.002449301710285461,France,FRA,île-de-france,N,,