--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome jpn dataset. It achieves the following results on the evaluation set: - Loss: 0.5957 - Der: 0.1975 - False Alarm: 0.0777 - Missed Detection: 0.0713 - Confusion: 0.0485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.5998 | 1.0 | 336 | 0.6155 | 0.2067 | 0.0726 | 0.0792 | 0.0549 | | 0.578 | 2.0 | 672 | 0.6258 | 0.2086 | 0.0851 | 0.0691 | 0.0544 | | 0.5431 | 3.0 | 1008 | 0.6054 | 0.2023 | 0.0830 | 0.0689 | 0.0505 | | 0.5198 | 4.0 | 1344 | 0.5989 | 0.1984 | 0.0762 | 0.0729 | 0.0494 | | 0.5211 | 5.0 | 1680 | 0.5957 | 0.1975 | 0.0777 | 0.0713 | 0.0485 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.2+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1