--- language: - jpn license: apache-2.0 base_model: openai/whisper-small tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set: - Loss: 0.5893 - Der: 0.1935 - False Alarm: 0.0760 - Missed Detection: 0.0713 - Confusion: 0.0461 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.5956 | 1.0 | 336 | 0.6028 | 0.2004 | 0.0637 | 0.0824 | 0.0543 | | 0.5696 | 2.0 | 672 | 0.6137 | 0.2001 | 0.0760 | 0.0741 | 0.0500 | | 0.5334 | 3.0 | 1008 | 0.5886 | 0.1941 | 0.0787 | 0.0701 | 0.0453 | | 0.5168 | 4.0 | 1344 | 0.5914 | 0.1933 | 0.0745 | 0.0723 | 0.0465 | | 0.5174 | 5.0 | 1680 | 0.5893 | 0.1935 | 0.0760 | 0.0713 | 0.0461 | ### Framework versions - Transformers 4.40.0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.19.1