dibsondivya commited on
Commit
285ab8b
1 Parent(s): caef264

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +7 -9
README.md CHANGED
@@ -22,21 +22,19 @@ model-index:
22
  value: 0.885
23
  ---
24
 
25
- # distilbert-phmtweets-sutd
26
 
27
- This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) for text classification to identify public health events through tweets. The dataset was used in an [Emory University Study on Detection of Personal Health Mentions in Social Media](https://arxiv.org/pdf/1802.09130v2.pdf), with this [custom dataset](https://github.com/emory-irlab/PHM2017).
28
 
29
  It achieves the following results on the evaluation set:
30
  - Accuracy: 0.885
31
 
32
  ## Usage
33
-
34
- `from transformers import AutoTokenizer, AutoModelForSequenceClassification`
35
-
36
- `tokenizer = AutoTokenizer.from_pretrained("dibsondivya/ernie-phmtweets-sutd")`
37
-
38
- `model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/ernie-phmtweets-sutd")`
39
-
40
 
41
  ### Model Evaluation Results
42
  With Validation Set
 
22
  value: 0.885
23
  ---
24
 
25
+ # ernie-phmtweets-sutd
26
 
27
+ This model is a fine-tuned version of [ernie-2.0-en](https://huggingface.co/nghuyong/ernie-2.0-en) for text classification to identify public health events through tweets. The dataset was used in an [Emory University Study on Detection of Personal Health Mentions in Social Media](https://arxiv.org/pdf/1802.09130v2.pdf), with this [custom dataset](https://github.com/emory-irlab/PHM2017).
28
 
29
  It achieves the following results on the evaluation set:
30
  - Accuracy: 0.885
31
 
32
  ## Usage
33
+ ```Python
34
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
35
+ tokenizer = AutoTokenizer.from_pretrained("dibsondivya/ernie-phmtweets-sutd")
36
+ model = AutoModelForSequenceClassification.from_pretrained("dibsondivya/ernie-phmtweets-sutd")
37
+ ```
 
 
38
 
39
  ### Model Evaluation Results
40
  With Validation Set