neo-nlp-dev
commited on
Upload model
Browse files- README.md +199 -0
- config.json +39 -0
- configuration_lola_gpt2.py +80 -0
- generation_config.json +6 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +1031 -0
- modeling_lola_gpt2.py +667 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
config.json
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/data/nikit_ws/LOLA-Megatron-DeepSpeed/lola_ws/fine-tune/instruction-ft/output_model",
|
3 |
+
"activation_function": "gelu_fast",
|
4 |
+
"architectures": [
|
5 |
+
"LOLALMHeadModel"
|
6 |
+
],
|
7 |
+
"attn_pdrop": 0.1,
|
8 |
+
"auto_map": {
|
9 |
+
"AutoConfig": "configuration_lola_gpt2.LOLAConfig",
|
10 |
+
"AutoModelForCausalLM": "modeling_lola_gpt2.LOLALMHeadModel"
|
11 |
+
},
|
12 |
+
"bos_token_id": 0,
|
13 |
+
"embd_pdrop": 0.1,
|
14 |
+
"eos_token_id": 5,
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"layer_norm_epsilon": 1e-05,
|
17 |
+
"model_type": "lola_v1",
|
18 |
+
"n_embd": 2048,
|
19 |
+
"n_head": 16,
|
20 |
+
"n_inner": 8192,
|
21 |
+
"n_layer": 24,
|
22 |
+
"n_positions": 2048,
|
23 |
+
"num_experts": 16,
|
24 |
+
"reorder_and_upcast_attn": false,
|
25 |
+
"resid_pdrop": 0.1,
|
26 |
+
"scale_attn_by_inverse_layer_idx": false,
|
27 |
+
"scale_attn_weights": true,
|
28 |
+
"summary_activation": null,
|
29 |
+
"summary_first_dropout": 0.1,
|
30 |
+
"summary_proj_to_labels": true,
|
31 |
+
"summary_type": "cls_index",
|
32 |
+
"summary_use_proj": true,
|
33 |
+
"tokenizer_class": "GPT2TokenizerFast",
|
34 |
+
"topk": 1,
|
35 |
+
"torch_dtype": "float32",
|
36 |
+
"transformers_version": "4.39.1",
|
37 |
+
"use_cache": true,
|
38 |
+
"vocab_size": 100000
|
39 |
+
}
|
configuration_lola_gpt2.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers.configuration_utils import PretrainedConfig
|
2 |
+
from transformers.utils import logging
|
3 |
+
from transformers import GPT2Config
|
4 |
+
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
class LOLAConfig(PretrainedConfig):
|
10 |
+
"""
|
11 |
+
This is the configuration class is a modified copy of https://huggingface.co/openai-community/gpt2 with MoE support.
|
12 |
+
"""
|
13 |
+
|
14 |
+
model_type = "lola_v1"
|
15 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
16 |
+
attribute_map = {
|
17 |
+
"hidden_size": "n_embd",
|
18 |
+
"max_position_embeddings": "n_positions",
|
19 |
+
"num_attention_heads": "n_head",
|
20 |
+
"num_hidden_layers": "n_layer",
|
21 |
+
}
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
vocab_size=100096,
|
26 |
+
n_positions=2048,
|
27 |
+
n_embd=2048,
|
28 |
+
n_layer=24,
|
29 |
+
n_head=16,
|
30 |
+
n_inner=8192,
|
31 |
+
activation_function="gelu_new",
|
32 |
+
resid_pdrop=0.1,
|
33 |
+
embd_pdrop=0.1,
|
34 |
+
attn_pdrop=0.1,
|
35 |
+
layer_norm_epsilon=1e-5,
|
36 |
+
initializer_range=0.02,
|
37 |
+
summary_type="cls_index",
|
38 |
+
summary_use_proj=True,
|
39 |
+
summary_activation=None,
|
40 |
+
summary_proj_to_labels=True,
|
41 |
+
summary_first_dropout=0.1,
|
42 |
+
scale_attn_weights=True,
|
43 |
+
use_cache=True,
|
44 |
+
bos_token_id=100095,
|
45 |
+
eos_token_id=100095,
|
46 |
+
scale_attn_by_inverse_layer_idx=False,
|
47 |
+
reorder_and_upcast_attn=False,
|
48 |
+
num_experts=16,
|
49 |
+
topk=1,
|
50 |
+
**kwargs,
|
51 |
+
):
|
52 |
+
self.vocab_size = vocab_size
|
53 |
+
self.n_positions = n_positions
|
54 |
+
self.n_embd = n_embd
|
55 |
+
self.n_layer = n_layer
|
56 |
+
self.n_head = n_head
|
57 |
+
self.n_inner = n_inner
|
58 |
+
self.activation_function = activation_function
|
59 |
+
self.resid_pdrop = resid_pdrop
|
60 |
+
self.embd_pdrop = embd_pdrop
|
61 |
+
self.attn_pdrop = attn_pdrop
|
62 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
63 |
+
self.initializer_range = initializer_range
|
64 |
+
self.summary_type = summary_type
|
65 |
+
self.summary_use_proj = summary_use_proj
|
66 |
+
self.summary_activation = summary_activation
|
67 |
+
self.summary_first_dropout = summary_first_dropout
|
68 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
69 |
+
self.scale_attn_weights = scale_attn_weights
|
70 |
+
self.use_cache = use_cache
|
71 |
+
self.scale_attn_by_inverse_layer_idx = scale_attn_by_inverse_layer_idx
|
72 |
+
self.reorder_and_upcast_attn = reorder_and_upcast_attn
|
73 |
+
self.num_experts = num_experts
|
74 |
+
self.topk = topk
|
75 |
+
|
76 |
+
self.bos_token_id = bos_token_id
|
77 |
+
self.eos_token_id = eos_token_id
|
78 |
+
|
79 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
80 |
+
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 100095,
|
4 |
+
"eos_token_id": 100095,
|
5 |
+
"transformers_version": "4.39.1"
|
6 |
+
}
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e5144c8d82e4165698bea8813c9066134d6c057961f078012b9488c5e7707b1
|
3 |
+
size 4998456040
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e724984ef8a0e278f869983b4bf037c5ddab4d4f188fb09a3d1b32cd16315bd
|
3 |
+
size 4968033584
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f28ccb2eac6cb01f6eedea1d1fb5015404d64b08e7a3f864227adcb6a203624
|
3 |
+
size 4968033640
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e8a462d1a2c848ce90488c25270a1ee1400161c83840161e91a6915f84a94065
|
3 |
+
size 4968033752
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26ac1bb603c614bdd5bc2b3abbbd174a4df3c463cf604fc07069be2acb32527d
|
3 |
+
size 4968033752
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aca6e2e92057414dc81286e2e123f5c4c16c2bbf98a628607b2ac2be235d17b1
|
3 |
+
size 4968050328
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,1031 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 29838524416
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"transformer.h.0.attn.c_attn.bias": "model-00001-of-00006.safetensors",
|
7 |
+
"transformer.h.0.attn.c_attn.weight": "model-00001-of-00006.safetensors",
|
8 |
+
"transformer.h.0.attn.c_proj.bias": "model-00001-of-00006.safetensors",
|
9 |
+
"transformer.h.0.attn.c_proj.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"transformer.h.0.ln_1.bias": "model-00001-of-00006.safetensors",
|
11 |
+
"transformer.h.0.ln_1.weight": "model-00001-of-00006.safetensors",
|
12 |
+
"transformer.h.0.ln_2.bias": "model-00001-of-00006.safetensors",
|
13 |
+
"transformer.h.0.ln_2.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"transformer.h.0.mlp.c_fc.bias": "model-00001-of-00006.safetensors",
|
15 |
+
"transformer.h.0.mlp.c_fc.weight": "model-00001-of-00006.safetensors",
|
16 |
+
"transformer.h.0.mlp.c_proj.bias": "model-00001-of-00006.safetensors",
|
17 |
+
"transformer.h.0.mlp.c_proj.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"transformer.h.1.attn.c_attn.bias": "model-00001-of-00006.safetensors",
|
19 |
+
"transformer.h.1.attn.c_attn.weight": "model-00001-of-00006.safetensors",
|
20 |
+
"transformer.h.1.attn.c_proj.bias": "model-00001-of-00006.safetensors",
|
21 |
+
"transformer.h.1.attn.c_proj.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"transformer.h.1.ln_1.bias": "model-00001-of-00006.safetensors",
|
23 |
+
"transformer.h.1.ln_1.weight": "model-00001-of-00006.safetensors",
|
24 |
+
"transformer.h.1.ln_2.bias": "model-00001-of-00006.safetensors",
|
25 |
+
"transformer.h.1.ln_2.weight": "model-00001-of-00006.safetensors",
|
26 |
+
"transformer.h.1.moe.experts.0.c_fc.bias": "model-00001-of-00006.safetensors",
|
27 |
+
"transformer.h.1.moe.experts.0.c_fc.weight": "model-00001-of-00006.safetensors",
|
28 |
+
"transformer.h.1.moe.experts.0.c_proj.bias": "model-00001-of-00006.safetensors",
|
29 |
+
"transformer.h.1.moe.experts.0.c_proj.weight": "model-00001-of-00006.safetensors",
|
30 |
+
"transformer.h.1.moe.experts.1.c_fc.bias": "model-00001-of-00006.safetensors",
|
31 |
+
"transformer.h.1.moe.experts.1.c_fc.weight": "model-00001-of-00006.safetensors",
|
32 |
+
"transformer.h.1.moe.experts.1.c_proj.bias": "model-00001-of-00006.safetensors",
|
33 |
+
"transformer.h.1.moe.experts.1.c_proj.weight": "model-00001-of-00006.safetensors",
|
34 |
+
"transformer.h.1.moe.experts.10.c_fc.bias": "model-00001-of-00006.safetensors",
|
35 |
+
"transformer.h.1.moe.experts.10.c_fc.weight": "model-00001-of-00006.safetensors",
|
36 |
+
"transformer.h.1.moe.experts.10.c_proj.bias": "model-00001-of-00006.safetensors",
|
37 |
+
"transformer.h.1.moe.experts.10.c_proj.weight": "model-00001-of-00006.safetensors",
|
38 |
+
"transformer.h.1.moe.experts.11.c_fc.bias": "model-00001-of-00006.safetensors",
|
39 |
+
"transformer.h.1.moe.experts.11.c_fc.weight": "model-00001-of-00006.safetensors",
|
40 |
+
"transformer.h.1.moe.experts.11.c_proj.bias": "model-00001-of-00006.safetensors",
|
41 |
+
"transformer.h.1.moe.experts.11.c_proj.weight": "model-00001-of-00006.safetensors",
|
42 |
+
"transformer.h.1.moe.experts.12.c_fc.bias": "model-00001-of-00006.safetensors",
|
43 |
+
"transformer.h.1.moe.experts.12.c_fc.weight": "model-00001-of-00006.safetensors",
|
44 |
+
"transformer.h.1.moe.experts.12.c_proj.bias": "model-00001-of-00006.safetensors",
|
45 |
+
"transformer.h.1.moe.experts.12.c_proj.weight": "model-00001-of-00006.safetensors",
|
46 |
+
"transformer.h.1.moe.experts.13.c_fc.bias": "model-00001-of-00006.safetensors",
|
47 |
+
"transformer.h.1.moe.experts.13.c_fc.weight": "model-00001-of-00006.safetensors",
|
48 |
+
"transformer.h.1.moe.experts.13.c_proj.bias": "model-00001-of-00006.safetensors",
|
49 |
+
"transformer.h.1.moe.experts.13.c_proj.weight": "model-00001-of-00006.safetensors",
|
50 |
+
"transformer.h.1.moe.experts.14.c_fc.bias": "model-00001-of-00006.safetensors",
|
51 |
+
"transformer.h.1.moe.experts.14.c_fc.weight": "model-00001-of-00006.safetensors",
|
52 |
+
"transformer.h.1.moe.experts.14.c_proj.bias": "model-00001-of-00006.safetensors",
|
53 |
+
"transformer.h.1.moe.experts.14.c_proj.weight": "model-00001-of-00006.safetensors",
|
54 |
+
"transformer.h.1.moe.experts.15.c_fc.bias": "model-00001-of-00006.safetensors",
|
55 |
+
"transformer.h.1.moe.experts.15.c_fc.weight": "model-00001-of-00006.safetensors",
|
56 |
+
"transformer.h.1.moe.experts.15.c_proj.bias": "model-00001-of-00006.safetensors",
|
57 |
+
"transformer.h.1.moe.experts.15.c_proj.weight": "model-00001-of-00006.safetensors",
|
58 |
+
"transformer.h.1.moe.experts.2.c_fc.bias": "model-00001-of-00006.safetensors",
|
59 |
+
"transformer.h.1.moe.experts.2.c_fc.weight": "model-00001-of-00006.safetensors",
|
60 |
+
"transformer.h.1.moe.experts.2.c_proj.bias": "model-00001-of-00006.safetensors",
|
61 |
+
"transformer.h.1.moe.experts.2.c_proj.weight": "model-00001-of-00006.safetensors",
|
62 |
+
"transformer.h.1.moe.experts.3.c_fc.bias": "model-00001-of-00006.safetensors",
|
63 |
+
"transformer.h.1.moe.experts.3.c_fc.weight": "model-00001-of-00006.safetensors",
|
64 |
+
"transformer.h.1.moe.experts.3.c_proj.bias": "model-00001-of-00006.safetensors",
|
65 |
+
"transformer.h.1.moe.experts.3.c_proj.weight": "model-00001-of-00006.safetensors",
|
66 |
+
"transformer.h.1.moe.experts.4.c_fc.bias": "model-00001-of-00006.safetensors",
|
67 |
+
"transformer.h.1.moe.experts.4.c_fc.weight": "model-00001-of-00006.safetensors",
|
68 |
+
"transformer.h.1.moe.experts.4.c_proj.bias": "model-00001-of-00006.safetensors",
|
69 |
+
"transformer.h.1.moe.experts.4.c_proj.weight": "model-00001-of-00006.safetensors",
|
70 |
+
"transformer.h.1.moe.experts.5.c_fc.bias": "model-00001-of-00006.safetensors",
|
71 |
+
"transformer.h.1.moe.experts.5.c_fc.weight": "model-00001-of-00006.safetensors",
|
72 |
+
"transformer.h.1.moe.experts.5.c_proj.bias": "model-00001-of-00006.safetensors",
|
73 |
+
"transformer.h.1.moe.experts.5.c_proj.weight": "model-00001-of-00006.safetensors",
|
74 |
+
"transformer.h.1.moe.experts.6.c_fc.bias": "model-00001-of-00006.safetensors",
|
75 |
+
"transformer.h.1.moe.experts.6.c_fc.weight": "model-00001-of-00006.safetensors",
|
76 |
+
"transformer.h.1.moe.experts.6.c_proj.bias": "model-00001-of-00006.safetensors",
|
77 |
+
"transformer.h.1.moe.experts.6.c_proj.weight": "model-00001-of-00006.safetensors",
|
78 |
+
"transformer.h.1.moe.experts.7.c_fc.bias": "model-00001-of-00006.safetensors",
|
79 |
+
"transformer.h.1.moe.experts.7.c_fc.weight": "model-00001-of-00006.safetensors",
|
80 |
+
"transformer.h.1.moe.experts.7.c_proj.bias": "model-00001-of-00006.safetensors",
|
81 |
+
"transformer.h.1.moe.experts.7.c_proj.weight": "model-00001-of-00006.safetensors",
|
82 |
+
"transformer.h.1.moe.experts.8.c_fc.bias": "model-00001-of-00006.safetensors",
|
83 |
+
"transformer.h.1.moe.experts.8.c_fc.weight": "model-00001-of-00006.safetensors",
|
84 |
+
"transformer.h.1.moe.experts.8.c_proj.bias": "model-00001-of-00006.safetensors",
|
85 |
+
"transformer.h.1.moe.experts.8.c_proj.weight": "model-00001-of-00006.safetensors",
|
86 |
+
"transformer.h.1.moe.experts.9.c_fc.bias": "model-00001-of-00006.safetensors",
|
87 |
+
"transformer.h.1.moe.experts.9.c_fc.weight": "model-00001-of-00006.safetensors",
|
88 |
+
"transformer.h.1.moe.experts.9.c_proj.bias": "model-00001-of-00006.safetensors",
|
89 |
+
"transformer.h.1.moe.experts.9.c_proj.weight": "model-00001-of-00006.safetensors",
|
90 |
+
"transformer.h.1.moe.gate.weight": "model-00001-of-00006.safetensors",
|
91 |
+
"transformer.h.10.attn.c_attn.bias": "model-00003-of-00006.safetensors",
|
92 |
+
"transformer.h.10.attn.c_attn.weight": "model-00003-of-00006.safetensors",
|
93 |
+
"transformer.h.10.attn.c_proj.bias": "model-00003-of-00006.safetensors",
|
94 |
+
"transformer.h.10.attn.c_proj.weight": "model-00003-of-00006.safetensors",
|
95 |
+
"transformer.h.10.ln_1.bias": "model-00003-of-00006.safetensors",
|
96 |
+
"transformer.h.10.ln_1.weight": "model-00003-of-00006.safetensors",
|
97 |
+
"transformer.h.10.ln_2.bias": "model-00003-of-00006.safetensors",
|
98 |
+
"transformer.h.10.ln_2.weight": "model-00003-of-00006.safetensors",
|
99 |
+
"transformer.h.10.mlp.c_fc.bias": "model-00003-of-00006.safetensors",
|
100 |
+
"transformer.h.10.mlp.c_fc.weight": "model-00003-of-00006.safetensors",
|
101 |
+
"transformer.h.10.mlp.c_proj.bias": "model-00003-of-00006.safetensors",
|
102 |
+
"transformer.h.10.mlp.c_proj.weight": "model-00003-of-00006.safetensors",
|
103 |
+
"transformer.h.11.attn.c_attn.bias": "model-00003-of-00006.safetensors",
|
104 |
+
"transformer.h.11.attn.c_attn.weight": "model-00003-of-00006.safetensors",
|
105 |
+
"transformer.h.11.attn.c_proj.bias": "model-00003-of-00006.safetensors",
|
106 |
+
"transformer.h.11.attn.c_proj.weight": "model-00003-of-00006.safetensors",
|
107 |
+
"transformer.h.11.ln_1.bias": "model-00003-of-00006.safetensors",
|
108 |
+
"transformer.h.11.ln_1.weight": "model-00003-of-00006.safetensors",
|
109 |
+
"transformer.h.11.ln_2.bias": "model-00003-of-00006.safetensors",
|
110 |
+
"transformer.h.11.ln_2.weight": "model-00003-of-00006.safetensors",
|
111 |
+
"transformer.h.11.moe.experts.0.c_fc.bias": "model-00003-of-00006.safetensors",
|
112 |
+
"transformer.h.11.moe.experts.0.c_fc.weight": "model-00003-of-00006.safetensors",
|
113 |
+
"transformer.h.11.moe.experts.0.c_proj.bias": "model-00003-of-00006.safetensors",
|
114 |
+
"transformer.h.11.moe.experts.0.c_proj.weight": "model-00003-of-00006.safetensors",
|
115 |
+
"transformer.h.11.moe.experts.1.c_fc.bias": "model-00003-of-00006.safetensors",
|
116 |
+
"transformer.h.11.moe.experts.1.c_fc.weight": "model-00003-of-00006.safetensors",
|
117 |
+
"transformer.h.11.moe.experts.1.c_proj.bias": "model-00003-of-00006.safetensors",
|
118 |
+
"transformer.h.11.moe.experts.1.c_proj.weight": "model-00003-of-00006.safetensors",
|
119 |
+
"transformer.h.11.moe.experts.10.c_fc.bias": "model-00003-of-00006.safetensors",
|
120 |
+
"transformer.h.11.moe.experts.10.c_fc.weight": "model-00003-of-00006.safetensors",
|
121 |
+
"transformer.h.11.moe.experts.10.c_proj.bias": "model-00003-of-00006.safetensors",
|
122 |
+
"transformer.h.11.moe.experts.10.c_proj.weight": "model-00003-of-00006.safetensors",
|
123 |
+
"transformer.h.11.moe.experts.11.c_fc.bias": "model-00003-of-00006.safetensors",
|
124 |
+
"transformer.h.11.moe.experts.11.c_fc.weight": "model-00003-of-00006.safetensors",
|
125 |
+
"transformer.h.11.moe.experts.11.c_proj.bias": "model-00003-of-00006.safetensors",
|
126 |
+
"transformer.h.11.moe.experts.11.c_proj.weight": "model-00003-of-00006.safetensors",
|
127 |
+
"transformer.h.11.moe.experts.12.c_fc.bias": "model-00003-of-00006.safetensors",
|
128 |
+
"transformer.h.11.moe.experts.12.c_fc.weight": "model-00003-of-00006.safetensors",
|
129 |
+
"transformer.h.11.moe.experts.12.c_proj.bias": "model-00003-of-00006.safetensors",
|
130 |
+
"transformer.h.11.moe.experts.12.c_proj.weight": "model-00003-of-00006.safetensors",
|
131 |
+
"transformer.h.11.moe.experts.13.c_fc.bias": "model-00004-of-00006.safetensors",
|
132 |
+
"transformer.h.11.moe.experts.13.c_fc.weight": "model-00004-of-00006.safetensors",
|
133 |
+
"transformer.h.11.moe.experts.13.c_proj.bias": "model-00004-of-00006.safetensors",
|
134 |
+
"transformer.h.11.moe.experts.13.c_proj.weight": "model-00004-of-00006.safetensors",
|
135 |
+
"transformer.h.11.moe.experts.14.c_fc.bias": "model-00004-of-00006.safetensors",
|
136 |
+
"transformer.h.11.moe.experts.14.c_fc.weight": "model-00004-of-00006.safetensors",
|
137 |
+
"transformer.h.11.moe.experts.14.c_proj.bias": "model-00004-of-00006.safetensors",
|
138 |
+
"transformer.h.11.moe.experts.14.c_proj.weight": "model-00004-of-00006.safetensors",
|
139 |
+
"transformer.h.11.moe.experts.15.c_fc.bias": "model-00004-of-00006.safetensors",
|
140 |
+
"transformer.h.11.moe.experts.15.c_fc.weight": "model-00004-of-00006.safetensors",
|
141 |
+
"transformer.h.11.moe.experts.15.c_proj.bias": "model-00004-of-00006.safetensors",
|
142 |
+
"transformer.h.11.moe.experts.15.c_proj.weight": "model-00004-of-00006.safetensors",
|
143 |
+
"transformer.h.11.moe.experts.2.c_fc.bias": "model-00003-of-00006.safetensors",
|
144 |
+
"transformer.h.11.moe.experts.2.c_fc.weight": "model-00003-of-00006.safetensors",
|
145 |
+
"transformer.h.11.moe.experts.2.c_proj.bias": "model-00003-of-00006.safetensors",
|
146 |
+
"transformer.h.11.moe.experts.2.c_proj.weight": "model-00003-of-00006.safetensors",
|
147 |
+
"transformer.h.11.moe.experts.3.c_fc.bias": "model-00003-of-00006.safetensors",
|
148 |
+
"transformer.h.11.moe.experts.3.c_fc.weight": "model-00003-of-00006.safetensors",
|
149 |
+
"transformer.h.11.moe.experts.3.c_proj.bias": "model-00003-of-00006.safetensors",
|
150 |
+
"transformer.h.11.moe.experts.3.c_proj.weight": "model-00003-of-00006.safetensors",
|
151 |
+
"transformer.h.11.moe.experts.4.c_fc.bias": "model-00003-of-00006.safetensors",
|
152 |
+
"transformer.h.11.moe.experts.4.c_fc.weight": "model-00003-of-00006.safetensors",
|
153 |
+
"transformer.h.11.moe.experts.4.c_proj.bias": "model-00003-of-00006.safetensors",
|
154 |
+
"transformer.h.11.moe.experts.4.c_proj.weight": "model-00003-of-00006.safetensors",
|
155 |
+
"transformer.h.11.moe.experts.5.c_fc.bias": "model-00003-of-00006.safetensors",
|
156 |
+
"transformer.h.11.moe.experts.5.c_fc.weight": "model-00003-of-00006.safetensors",
|
157 |
+
"transformer.h.11.moe.experts.5.c_proj.bias": "model-00003-of-00006.safetensors",
|
158 |
+
"transformer.h.11.moe.experts.5.c_proj.weight": "model-00003-of-00006.safetensors",
|
159 |
+
"transformer.h.11.moe.experts.6.c_fc.bias": "model-00003-of-00006.safetensors",
|
160 |
+
"transformer.h.11.moe.experts.6.c_fc.weight": "model-00003-of-00006.safetensors",
|
161 |
+
"transformer.h.11.moe.experts.6.c_proj.bias": "model-00003-of-00006.safetensors",
|
162 |
+
"transformer.h.11.moe.experts.6.c_proj.weight": "model-00003-of-00006.safetensors",
|
163 |
+
"transformer.h.11.moe.experts.7.c_fc.bias": "model-00003-of-00006.safetensors",
|
164 |
+
"transformer.h.11.moe.experts.7.c_fc.weight": "model-00003-of-00006.safetensors",
|
165 |
+
"transformer.h.11.moe.experts.7.c_proj.bias": "model-00003-of-00006.safetensors",
|
166 |
+
"transformer.h.11.moe.experts.7.c_proj.weight": "model-00003-of-00006.safetensors",
|
167 |
+
"transformer.h.11.moe.experts.8.c_fc.bias": "model-00003-of-00006.safetensors",
|
168 |
+
"transformer.h.11.moe.experts.8.c_fc.weight": "model-00003-of-00006.safetensors",
|
169 |
+
"transformer.h.11.moe.experts.8.c_proj.bias": "model-00003-of-00006.safetensors",
|
170 |
+
"transformer.h.11.moe.experts.8.c_proj.weight": "model-00003-of-00006.safetensors",
|
171 |
+
"transformer.h.11.moe.experts.9.c_fc.bias": "model-00003-of-00006.safetensors",
|
172 |
+
"transformer.h.11.moe.experts.9.c_fc.weight": "model-00003-of-00006.safetensors",
|
173 |
+
"transformer.h.11.moe.experts.9.c_proj.bias": "model-00003-of-00006.safetensors",
|
174 |
+
"transformer.h.11.moe.experts.9.c_proj.weight": "model-00003-of-00006.safetensors",
|
175 |
+
"transformer.h.11.moe.gate.weight": "model-00003-of-00006.safetensors",
|
176 |
+
"transformer.h.12.attn.c_attn.bias": "model-00004-of-00006.safetensors",
|
177 |
+
"transformer.h.12.attn.c_attn.weight": "model-00004-of-00006.safetensors",
|
178 |
+
"transformer.h.12.attn.c_proj.bias": "model-00004-of-00006.safetensors",
|
179 |
+
"transformer.h.12.attn.c_proj.weight": "model-00004-of-00006.safetensors",
|
180 |
+
"transformer.h.12.ln_1.bias": "model-00004-of-00006.safetensors",
|
181 |
+
"transformer.h.12.ln_1.weight": "model-00004-of-00006.safetensors",
|
182 |
+
"transformer.h.12.ln_2.bias": "model-00004-of-00006.safetensors",
|
183 |
+
"transformer.h.12.ln_2.weight": "model-00004-of-00006.safetensors",
|
184 |
+
"transformer.h.12.mlp.c_fc.bias": "model-00004-of-00006.safetensors",
|
185 |
+
"transformer.h.12.mlp.c_fc.weight": "model-00004-of-00006.safetensors",
|
186 |
+
"transformer.h.12.mlp.c_proj.bias": "model-00004-of-00006.safetensors",
|
187 |
+
"transformer.h.12.mlp.c_proj.weight": "model-00004-of-00006.safetensors",
|
188 |
+
"transformer.h.13.attn.c_attn.bias": "model-00004-of-00006.safetensors",
|
189 |
+
"transformer.h.13.attn.c_attn.weight": "model-00004-of-00006.safetensors",
|
190 |
+
"transformer.h.13.attn.c_proj.bias": "model-00004-of-00006.safetensors",
|
191 |
+
"transformer.h.13.attn.c_proj.weight": "model-00004-of-00006.safetensors",
|
192 |
+
"transformer.h.13.ln_1.bias": "model-00004-of-00006.safetensors",
|
193 |
+
"transformer.h.13.ln_1.weight": "model-00004-of-00006.safetensors",
|
194 |
+
"transformer.h.13.ln_2.bias": "model-00004-of-00006.safetensors",
|
195 |
+
"transformer.h.13.ln_2.weight": "model-00004-of-00006.safetensors",
|
196 |
+
"transformer.h.13.moe.experts.0.c_fc.bias": "model-00004-of-00006.safetensors",
|
197 |
+
"transformer.h.13.moe.experts.0.c_fc.weight": "model-00004-of-00006.safetensors",
|
198 |
+
"transformer.h.13.moe.experts.0.c_proj.bias": "model-00004-of-00006.safetensors",
|
199 |
+
"transformer.h.13.moe.experts.0.c_proj.weight": "model-00004-of-00006.safetensors",
|
200 |
+
"transformer.h.13.moe.experts.1.c_fc.bias": "model-00004-of-00006.safetensors",
|
201 |
+
"transformer.h.13.moe.experts.1.c_fc.weight": "model-00004-of-00006.safetensors",
|
202 |
+
"transformer.h.13.moe.experts.1.c_proj.bias": "model-00004-of-00006.safetensors",
|
203 |
+
"transformer.h.13.moe.experts.1.c_proj.weight": "model-00004-of-00006.safetensors",
|
204 |
+
"transformer.h.13.moe.experts.10.c_fc.bias": "model-00004-of-00006.safetensors",
|
205 |
+
"transformer.h.13.moe.experts.10.c_fc.weight": "model-00004-of-00006.safetensors",
|
206 |
+
"transformer.h.13.moe.experts.10.c_proj.bias": "model-00004-of-00006.safetensors",
|
207 |
+
"transformer.h.13.moe.experts.10.c_proj.weight": "model-00004-of-00006.safetensors",
|
208 |
+
"transformer.h.13.moe.experts.11.c_fc.bias": "model-00004-of-00006.safetensors",
|
209 |
+
"transformer.h.13.moe.experts.11.c_fc.weight": "model-00004-of-00006.safetensors",
|
210 |
+
"transformer.h.13.moe.experts.11.c_proj.bias": "model-00004-of-00006.safetensors",
|
211 |
+
"transformer.h.13.moe.experts.11.c_proj.weight": "model-00004-of-00006.safetensors",
|
212 |
+
"transformer.h.13.moe.experts.12.c_fc.bias": "model-00004-of-00006.safetensors",
|
213 |
+
"transformer.h.13.moe.experts.12.c_fc.weight": "model-00004-of-00006.safetensors",
|
214 |
+
"transformer.h.13.moe.experts.12.c_proj.bias": "model-00004-of-00006.safetensors",
|
215 |
+
"transformer.h.13.moe.experts.12.c_proj.weight": "model-00004-of-00006.safetensors",
|
216 |
+
"transformer.h.13.moe.experts.13.c_fc.bias": "model-00004-of-00006.safetensors",
|
217 |
+
"transformer.h.13.moe.experts.13.c_fc.weight": "model-00004-of-00006.safetensors",
|
218 |
+
"transformer.h.13.moe.experts.13.c_proj.bias": "model-00004-of-00006.safetensors",
|
219 |
+
"transformer.h.13.moe.experts.13.c_proj.weight": "model-00004-of-00006.safetensors",
|
220 |
+
"transformer.h.13.moe.experts.14.c_fc.bias": "model-00004-of-00006.safetensors",
|
221 |
+
"transformer.h.13.moe.experts.14.c_fc.weight": "model-00004-of-00006.safetensors",
|
222 |
+
"transformer.h.13.moe.experts.14.c_proj.bias": "model-00004-of-00006.safetensors",
|
223 |
+
"transformer.h.13.moe.experts.14.c_proj.weight": "model-00004-of-00006.safetensors",
|
224 |
+
"transformer.h.13.moe.experts.15.c_fc.bias": "model-00004-of-00006.safetensors",
|
225 |
+
"transformer.h.13.moe.experts.15.c_fc.weight": "model-00004-of-00006.safetensors",
|
226 |
+
"transformer.h.13.moe.experts.15.c_proj.bias": "model-00004-of-00006.safetensors",
|
227 |
+
"transformer.h.13.moe.experts.15.c_proj.weight": "model-00004-of-00006.safetensors",
|
228 |
+
"transformer.h.13.moe.experts.2.c_fc.bias": "model-00004-of-00006.safetensors",
|
229 |
+
"transformer.h.13.moe.experts.2.c_fc.weight": "model-00004-of-00006.safetensors",
|
230 |
+
"transformer.h.13.moe.experts.2.c_proj.bias": "model-00004-of-00006.safetensors",
|
231 |
+
"transformer.h.13.moe.experts.2.c_proj.weight": "model-00004-of-00006.safetensors",
|
232 |
+
"transformer.h.13.moe.experts.3.c_fc.bias": "model-00004-of-00006.safetensors",
|
233 |
+
"transformer.h.13.moe.experts.3.c_fc.weight": "model-00004-of-00006.safetensors",
|
234 |
+
"transformer.h.13.moe.experts.3.c_proj.bias": "model-00004-of-00006.safetensors",
|
235 |
+
"transformer.h.13.moe.experts.3.c_proj.weight": "model-00004-of-00006.safetensors",
|
236 |
+
"transformer.h.13.moe.experts.4.c_fc.bias": "model-00004-of-00006.safetensors",
|
237 |
+
"transformer.h.13.moe.experts.4.c_fc.weight": "model-00004-of-00006.safetensors",
|
238 |
+
"transformer.h.13.moe.experts.4.c_proj.bias": "model-00004-of-00006.safetensors",
|
239 |
+
"transformer.h.13.moe.experts.4.c_proj.weight": "model-00004-of-00006.safetensors",
|
240 |
+
"transformer.h.13.moe.experts.5.c_fc.bias": "model-00004-of-00006.safetensors",
|
241 |
+
"transformer.h.13.moe.experts.5.c_fc.weight": "model-00004-of-00006.safetensors",
|
242 |
+
"transformer.h.13.moe.experts.5.c_proj.bias": "model-00004-of-00006.safetensors",
|
243 |
+
"transformer.h.13.moe.experts.5.c_proj.weight": "model-00004-of-00006.safetensors",
|
244 |
+
"transformer.h.13.moe.experts.6.c_fc.bias": "model-00004-of-00006.safetensors",
|
245 |
+
"transformer.h.13.moe.experts.6.c_fc.weight": "model-00004-of-00006.safetensors",
|
246 |
+
"transformer.h.13.moe.experts.6.c_proj.bias": "model-00004-of-00006.safetensors",
|
247 |
+
"transformer.h.13.moe.experts.6.c_proj.weight": "model-00004-of-00006.safetensors",
|
248 |
+
"transformer.h.13.moe.experts.7.c_fc.bias": "model-00004-of-00006.safetensors",
|
249 |
+
"transformer.h.13.moe.experts.7.c_fc.weight": "model-00004-of-00006.safetensors",
|
250 |
+
"transformer.h.13.moe.experts.7.c_proj.bias": "model-00004-of-00006.safetensors",
|
251 |
+
"transformer.h.13.moe.experts.7.c_proj.weight": "model-00004-of-00006.safetensors",
|
252 |
+
"transformer.h.13.moe.experts.8.c_fc.bias": "model-00004-of-00006.safetensors",
|
253 |
+
"transformer.h.13.moe.experts.8.c_fc.weight": "model-00004-of-00006.safetensors",
|
254 |
+
"transformer.h.13.moe.experts.8.c_proj.bias": "model-00004-of-00006.safetensors",
|
255 |
+
"transformer.h.13.moe.experts.8.c_proj.weight": "model-00004-of-00006.safetensors",
|
256 |
+
"transformer.h.13.moe.experts.9.c_fc.bias": "model-00004-of-00006.safetensors",
|
257 |
+
"transformer.h.13.moe.experts.9.c_fc.weight": "model-00004-of-00006.safetensors",
|
258 |
+
"transformer.h.13.moe.experts.9.c_proj.bias": "model-00004-of-00006.safetensors",
|
259 |
+
"transformer.h.13.moe.experts.9.c_proj.weight": "model-00004-of-00006.safetensors",
|
260 |
+
"transformer.h.13.moe.gate.weight": "model-00004-of-00006.safetensors",
|
261 |
+
"transformer.h.14.attn.c_attn.bias": "model-00004-of-00006.safetensors",
|
262 |
+
"transformer.h.14.attn.c_attn.weight": "model-00004-of-00006.safetensors",
|
263 |
+
"transformer.h.14.attn.c_proj.bias": "model-00004-of-00006.safetensors",
|
264 |
+
"transformer.h.14.attn.c_proj.weight": "model-00004-of-00006.safetensors",
|
265 |
+
"transformer.h.14.ln_1.bias": "model-00004-of-00006.safetensors",
|
266 |
+
"transformer.h.14.ln_1.weight": "model-00004-of-00006.safetensors",
|
267 |
+
"transformer.h.14.ln_2.bias": "model-00004-of-00006.safetensors",
|
268 |
+
"transformer.h.14.ln_2.weight": "model-00004-of-00006.safetensors",
|
269 |
+
"transformer.h.14.mlp.c_fc.bias": "model-00004-of-00006.safetensors",
|
270 |
+
"transformer.h.14.mlp.c_fc.weight": "model-00004-of-00006.safetensors",
|
271 |
+
"transformer.h.14.mlp.c_proj.bias": "model-00004-of-00006.safetensors",
|
272 |
+
"transformer.h.14.mlp.c_proj.weight": "model-00004-of-00006.safetensors",
|
273 |
+
"transformer.h.15.attn.c_attn.bias": "model-00004-of-00006.safetensors",
|
274 |
+
"transformer.h.15.attn.c_attn.weight": "model-00004-of-00006.safetensors",
|
275 |
+
"transformer.h.15.attn.c_proj.bias": "model-00004-of-00006.safetensors",
|
276 |
+
"transformer.h.15.attn.c_proj.weight": "model-00004-of-00006.safetensors",
|
277 |
+
"transformer.h.15.ln_1.bias": "model-00004-of-00006.safetensors",
|
278 |
+
"transformer.h.15.ln_1.weight": "model-00004-of-00006.safetensors",
|
279 |
+
"transformer.h.15.ln_2.bias": "model-00004-of-00006.safetensors",
|
280 |
+
"transformer.h.15.ln_2.weight": "model-00004-of-00006.safetensors",
|
281 |
+
"transformer.h.15.moe.experts.0.c_fc.bias": "model-00004-of-00006.safetensors",
|
282 |
+
"transformer.h.15.moe.experts.0.c_fc.weight": "model-00004-of-00006.safetensors",
|
283 |
+
"transformer.h.15.moe.experts.0.c_proj.bias": "model-00004-of-00006.safetensors",
|
284 |
+
"transformer.h.15.moe.experts.0.c_proj.weight": "model-00004-of-00006.safetensors",
|
285 |
+
"transformer.h.15.moe.experts.1.c_fc.bias": "model-00004-of-00006.safetensors",
|
286 |
+
"transformer.h.15.moe.experts.1.c_fc.weight": "model-00004-of-00006.safetensors",
|
287 |
+
"transformer.h.15.moe.experts.1.c_proj.bias": "model-00004-of-00006.safetensors",
|
288 |
+
"transformer.h.15.moe.experts.1.c_proj.weight": "model-00004-of-00006.safetensors",
|
289 |
+
"transformer.h.15.moe.experts.10.c_fc.bias": "model-00004-of-00006.safetensors",
|
290 |
+
"transformer.h.15.moe.experts.10.c_fc.weight": "model-00004-of-00006.safetensors",
|
291 |
+
"transformer.h.15.moe.experts.10.c_proj.bias": "model-00004-of-00006.safetensors",
|
292 |
+
"transformer.h.15.moe.experts.10.c_proj.weight": "model-00004-of-00006.safetensors",
|
293 |
+
"transformer.h.15.moe.experts.11.c_fc.bias": "model-00004-of-00006.safetensors",
|
294 |
+
"transformer.h.15.moe.experts.11.c_fc.weight": "model-00004-of-00006.safetensors",
|
295 |
+
"transformer.h.15.moe.experts.11.c_proj.bias": "model-00004-of-00006.safetensors",
|
296 |
+
"transformer.h.15.moe.experts.11.c_proj.weight": "model-00004-of-00006.safetensors",
|
297 |
+
"transformer.h.15.moe.experts.12.c_fc.bias": "model-00004-of-00006.safetensors",
|
298 |
+
"transformer.h.15.moe.experts.12.c_fc.weight": "model-00004-of-00006.safetensors",
|
299 |
+
"transformer.h.15.moe.experts.12.c_proj.bias": "model-00004-of-00006.safetensors",
|
300 |
+
"transformer.h.15.moe.experts.12.c_proj.weight": "model-00004-of-00006.safetensors",
|
301 |
+
"transformer.h.15.moe.experts.13.c_fc.bias": "model-00004-of-00006.safetensors",
|
302 |
+
"transformer.h.15.moe.experts.13.c_fc.weight": "model-00004-of-00006.safetensors",
|
303 |
+
"transformer.h.15.moe.experts.13.c_proj.bias": "model-00004-of-00006.safetensors",
|
304 |
+
"transformer.h.15.moe.experts.13.c_proj.weight": "model-00004-of-00006.safetensors",
|
305 |
+
"transformer.h.15.moe.experts.14.c_fc.bias": "model-00005-of-00006.safetensors",
|
306 |
+
"transformer.h.15.moe.experts.14.c_fc.weight": "model-00005-of-00006.safetensors",
|
307 |
+
"transformer.h.15.moe.experts.14.c_proj.bias": "model-00005-of-00006.safetensors",
|
308 |
+
"transformer.h.15.moe.experts.14.c_proj.weight": "model-00005-of-00006.safetensors",
|
309 |
+
"transformer.h.15.moe.experts.15.c_fc.bias": "model-00005-of-00006.safetensors",
|
310 |
+
"transformer.h.15.moe.experts.15.c_fc.weight": "model-00005-of-00006.safetensors",
|
311 |
+
"transformer.h.15.moe.experts.15.c_proj.bias": "model-00005-of-00006.safetensors",
|
312 |
+
"transformer.h.15.moe.experts.15.c_proj.weight": "model-00005-of-00006.safetensors",
|
313 |
+
"transformer.h.15.moe.experts.2.c_fc.bias": "model-00004-of-00006.safetensors",
|
314 |
+
"transformer.h.15.moe.experts.2.c_fc.weight": "model-00004-of-00006.safetensors",
|
315 |
+
"transformer.h.15.moe.experts.2.c_proj.bias": "model-00004-of-00006.safetensors",
|
316 |
+
"transformer.h.15.moe.experts.2.c_proj.weight": "model-00004-of-00006.safetensors",
|
317 |
+
"transformer.h.15.moe.experts.3.c_fc.bias": "model-00004-of-00006.safetensors",
|
318 |
+
"transformer.h.15.moe.experts.3.c_fc.weight": "model-00004-of-00006.safetensors",
|
319 |
+
"transformer.h.15.moe.experts.3.c_proj.bias": "model-00004-of-00006.safetensors",
|
320 |
+
"transformer.h.15.moe.experts.3.c_proj.weight": "model-00004-of-00006.safetensors",
|
321 |
+
"transformer.h.15.moe.experts.4.c_fc.bias": "model-00004-of-00006.safetensors",
|
322 |
+
"transformer.h.15.moe.experts.4.c_fc.weight": "model-00004-of-00006.safetensors",
|
323 |
+
"transformer.h.15.moe.experts.4.c_proj.bias": "model-00004-of-00006.safetensors",
|
324 |
+
"transformer.h.15.moe.experts.4.c_proj.weight": "model-00004-of-00006.safetensors",
|
325 |
+
"transformer.h.15.moe.experts.5.c_fc.bias": "model-00004-of-00006.safetensors",
|
326 |
+
"transformer.h.15.moe.experts.5.c_fc.weight": "model-00004-of-00006.safetensors",
|
327 |
+
"transformer.h.15.moe.experts.5.c_proj.bias": "model-00004-of-00006.safetensors",
|
328 |
+
"transformer.h.15.moe.experts.5.c_proj.weight": "model-00004-of-00006.safetensors",
|
329 |
+
"transformer.h.15.moe.experts.6.c_fc.bias": "model-00004-of-00006.safetensors",
|
330 |
+
"transformer.h.15.moe.experts.6.c_fc.weight": "model-00004-of-00006.safetensors",
|
331 |
+
"transformer.h.15.moe.experts.6.c_proj.bias": "model-00004-of-00006.safetensors",
|
332 |
+
"transformer.h.15.moe.experts.6.c_proj.weight": "model-00004-of-00006.safetensors",
|
333 |
+
"transformer.h.15.moe.experts.7.c_fc.bias": "model-00004-of-00006.safetensors",
|
334 |
+
"transformer.h.15.moe.experts.7.c_fc.weight": "model-00004-of-00006.safetensors",
|
335 |
+
"transformer.h.15.moe.experts.7.c_proj.bias": "model-00004-of-00006.safetensors",
|
336 |
+
"transformer.h.15.moe.experts.7.c_proj.weight": "model-00004-of-00006.safetensors",
|
337 |
+
"transformer.h.15.moe.experts.8.c_fc.bias": "model-00004-of-00006.safetensors",
|
338 |
+
"transformer.h.15.moe.experts.8.c_fc.weight": "model-00004-of-00006.safetensors",
|
339 |
+
"transformer.h.15.moe.experts.8.c_proj.bias": "model-00004-of-00006.safetensors",
|
340 |
+
"transformer.h.15.moe.experts.8.c_proj.weight": "model-00004-of-00006.safetensors",
|
341 |
+
"transformer.h.15.moe.experts.9.c_fc.bias": "model-00004-of-00006.safetensors",
|
342 |
+
"transformer.h.15.moe.experts.9.c_fc.weight": "model-00004-of-00006.safetensors",
|
343 |
+
"transformer.h.15.moe.experts.9.c_proj.bias": "model-00004-of-00006.safetensors",
|
344 |
+
"transformer.h.15.moe.experts.9.c_proj.weight": "model-00004-of-00006.safetensors",
|
345 |
+
"transformer.h.15.moe.gate.weight": "model-00004-of-00006.safetensors",
|
346 |
+
"transformer.h.16.attn.c_attn.bias": "model-00005-of-00006.safetensors",
|
347 |
+
"transformer.h.16.attn.c_attn.weight": "model-00005-of-00006.safetensors",
|
348 |
+
"transformer.h.16.attn.c_proj.bias": "model-00005-of-00006.safetensors",
|
349 |
+
"transformer.h.16.attn.c_proj.weight": "model-00005-of-00006.safetensors",
|
350 |
+
"transformer.h.16.ln_1.bias": "model-00005-of-00006.safetensors",
|
351 |
+
"transformer.h.16.ln_1.weight": "model-00005-of-00006.safetensors",
|
352 |
+
"transformer.h.16.ln_2.bias": "model-00005-of-00006.safetensors",
|
353 |
+
"transformer.h.16.ln_2.weight": "model-00005-of-00006.safetensors",
|
354 |
+
"transformer.h.16.mlp.c_fc.bias": "model-00005-of-00006.safetensors",
|
355 |
+
"transformer.h.16.mlp.c_fc.weight": "model-00005-of-00006.safetensors",
|
356 |
+
"transformer.h.16.mlp.c_proj.bias": "model-00005-of-00006.safetensors",
|
357 |
+
"transformer.h.16.mlp.c_proj.weight": "model-00005-of-00006.safetensors",
|
358 |
+
"transformer.h.17.attn.c_attn.bias": "model-00005-of-00006.safetensors",
|
359 |
+
"transformer.h.17.attn.c_attn.weight": "model-00005-of-00006.safetensors",
|
360 |
+
"transformer.h.17.attn.c_proj.bias": "model-00005-of-00006.safetensors",
|
361 |
+
"transformer.h.17.attn.c_proj.weight": "model-00005-of-00006.safetensors",
|
362 |
+
"transformer.h.17.ln_1.bias": "model-00005-of-00006.safetensors",
|
363 |
+
"transformer.h.17.ln_1.weight": "model-00005-of-00006.safetensors",
|
364 |
+
"transformer.h.17.ln_2.bias": "model-00005-of-00006.safetensors",
|
365 |
+
"transformer.h.17.ln_2.weight": "model-00005-of-00006.safetensors",
|
366 |
+
"transformer.h.17.moe.experts.0.c_fc.bias": "model-00005-of-00006.safetensors",
|
367 |
+
"transformer.h.17.moe.experts.0.c_fc.weight": "model-00005-of-00006.safetensors",
|
368 |
+
"transformer.h.17.moe.experts.0.c_proj.bias": "model-00005-of-00006.safetensors",
|
369 |
+
"transformer.h.17.moe.experts.0.c_proj.weight": "model-00005-of-00006.safetensors",
|
370 |
+
"transformer.h.17.moe.experts.1.c_fc.bias": "model-00005-of-00006.safetensors",
|
371 |
+
"transformer.h.17.moe.experts.1.c_fc.weight": "model-00005-of-00006.safetensors",
|
372 |
+
"transformer.h.17.moe.experts.1.c_proj.bias": "model-00005-of-00006.safetensors",
|
373 |
+
"transformer.h.17.moe.experts.1.c_proj.weight": "model-00005-of-00006.safetensors",
|
374 |
+
"transformer.h.17.moe.experts.10.c_fc.bias": "model-00005-of-00006.safetensors",
|
375 |
+
"transformer.h.17.moe.experts.10.c_fc.weight": "model-00005-of-00006.safetensors",
|
376 |
+
"transformer.h.17.moe.experts.10.c_proj.bias": "model-00005-of-00006.safetensors",
|
377 |
+
"transformer.h.17.moe.experts.10.c_proj.weight": "model-00005-of-00006.safetensors",
|
378 |
+
"transformer.h.17.moe.experts.11.c_fc.bias": "model-00005-of-00006.safetensors",
|
379 |
+
"transformer.h.17.moe.experts.11.c_fc.weight": "model-00005-of-00006.safetensors",
|
380 |
+
"transformer.h.17.moe.experts.11.c_proj.bias": "model-00005-of-00006.safetensors",
|
381 |
+
"transformer.h.17.moe.experts.11.c_proj.weight": "model-00005-of-00006.safetensors",
|
382 |
+
"transformer.h.17.moe.experts.12.c_fc.bias": "model-00005-of-00006.safetensors",
|
383 |
+
"transformer.h.17.moe.experts.12.c_fc.weight": "model-00005-of-00006.safetensors",
|
384 |
+
"transformer.h.17.moe.experts.12.c_proj.bias": "model-00005-of-00006.safetensors",
|
385 |
+
"transformer.h.17.moe.experts.12.c_proj.weight": "model-00005-of-00006.safetensors",
|
386 |
+
"transformer.h.17.moe.experts.13.c_fc.bias": "model-00005-of-00006.safetensors",
|
387 |
+
"transformer.h.17.moe.experts.13.c_fc.weight": "model-00005-of-00006.safetensors",
|
388 |
+
"transformer.h.17.moe.experts.13.c_proj.bias": "model-00005-of-00006.safetensors",
|
389 |
+
"transformer.h.17.moe.experts.13.c_proj.weight": "model-00005-of-00006.safetensors",
|
390 |
+
"transformer.h.17.moe.experts.14.c_fc.bias": "model-00005-of-00006.safetensors",
|
391 |
+
"transformer.h.17.moe.experts.14.c_fc.weight": "model-00005-of-00006.safetensors",
|
392 |
+
"transformer.h.17.moe.experts.14.c_proj.bias": "model-00005-of-00006.safetensors",
|
393 |
+
"transformer.h.17.moe.experts.14.c_proj.weight": "model-00005-of-00006.safetensors",
|
394 |
+
"transformer.h.17.moe.experts.15.c_fc.bias": "model-00005-of-00006.safetensors",
|
395 |
+
"transformer.h.17.moe.experts.15.c_fc.weight": "model-00005-of-00006.safetensors",
|
396 |
+
"transformer.h.17.moe.experts.15.c_proj.bias": "model-00005-of-00006.safetensors",
|
397 |
+
"transformer.h.17.moe.experts.15.c_proj.weight": "model-00005-of-00006.safetensors",
|
398 |
+
"transformer.h.17.moe.experts.2.c_fc.bias": "model-00005-of-00006.safetensors",
|
399 |
+
"transformer.h.17.moe.experts.2.c_fc.weight": "model-00005-of-00006.safetensors",
|
400 |
+
"transformer.h.17.moe.experts.2.c_proj.bias": "model-00005-of-00006.safetensors",
|
401 |
+
"transformer.h.17.moe.experts.2.c_proj.weight": "model-00005-of-00006.safetensors",
|
402 |
+
"transformer.h.17.moe.experts.3.c_fc.bias": "model-00005-of-00006.safetensors",
|
403 |
+
"transformer.h.17.moe.experts.3.c_fc.weight": "model-00005-of-00006.safetensors",
|
404 |
+
"transformer.h.17.moe.experts.3.c_proj.bias": "model-00005-of-00006.safetensors",
|
405 |
+
"transformer.h.17.moe.experts.3.c_proj.weight": "model-00005-of-00006.safetensors",
|
406 |
+
"transformer.h.17.moe.experts.4.c_fc.bias": "model-00005-of-00006.safetensors",
|
407 |
+
"transformer.h.17.moe.experts.4.c_fc.weight": "model-00005-of-00006.safetensors",
|
408 |
+
"transformer.h.17.moe.experts.4.c_proj.bias": "model-00005-of-00006.safetensors",
|
409 |
+
"transformer.h.17.moe.experts.4.c_proj.weight": "model-00005-of-00006.safetensors",
|
410 |
+
"transformer.h.17.moe.experts.5.c_fc.bias": "model-00005-of-00006.safetensors",
|
411 |
+
"transformer.h.17.moe.experts.5.c_fc.weight": "model-00005-of-00006.safetensors",
|
412 |
+
"transformer.h.17.moe.experts.5.c_proj.bias": "model-00005-of-00006.safetensors",
|
413 |
+
"transformer.h.17.moe.experts.5.c_proj.weight": "model-00005-of-00006.safetensors",
|
414 |
+
"transformer.h.17.moe.experts.6.c_fc.bias": "model-00005-of-00006.safetensors",
|
415 |
+
"transformer.h.17.moe.experts.6.c_fc.weight": "model-00005-of-00006.safetensors",
|
416 |
+
"transformer.h.17.moe.experts.6.c_proj.bias": "model-00005-of-00006.safetensors",
|
417 |
+
"transformer.h.17.moe.experts.6.c_proj.weight": "model-00005-of-00006.safetensors",
|
418 |
+
"transformer.h.17.moe.experts.7.c_fc.bias": "model-00005-of-00006.safetensors",
|
419 |
+
"transformer.h.17.moe.experts.7.c_fc.weight": "model-00005-of-00006.safetensors",
|
420 |
+
"transformer.h.17.moe.experts.7.c_proj.bias": "model-00005-of-00006.safetensors",
|
421 |
+
"transformer.h.17.moe.experts.7.c_proj.weight": "model-00005-of-00006.safetensors",
|
422 |
+
"transformer.h.17.moe.experts.8.c_fc.bias": "model-00005-of-00006.safetensors",
|
423 |
+
"transformer.h.17.moe.experts.8.c_fc.weight": "model-00005-of-00006.safetensors",
|
424 |
+
"transformer.h.17.moe.experts.8.c_proj.bias": "model-00005-of-00006.safetensors",
|
425 |
+
"transformer.h.17.moe.experts.8.c_proj.weight": "model-00005-of-00006.safetensors",
|
426 |
+
"transformer.h.17.moe.experts.9.c_fc.bias": "model-00005-of-00006.safetensors",
|
427 |
+
"transformer.h.17.moe.experts.9.c_fc.weight": "model-00005-of-00006.safetensors",
|
428 |
+
"transformer.h.17.moe.experts.9.c_proj.bias": "model-00005-of-00006.safetensors",
|
429 |
+
"transformer.h.17.moe.experts.9.c_proj.weight": "model-00005-of-00006.safetensors",
|
430 |
+
"transformer.h.17.moe.gate.weight": "model-00005-of-00006.safetensors",
|
431 |
+
"transformer.h.18.attn.c_attn.bias": "model-00005-of-00006.safetensors",
|
432 |
+
"transformer.h.18.attn.c_attn.weight": "model-00005-of-00006.safetensors",
|
433 |
+
"transformer.h.18.attn.c_proj.bias": "model-00005-of-00006.safetensors",
|
434 |
+
"transformer.h.18.attn.c_proj.weight": "model-00005-of-00006.safetensors",
|
435 |
+
"transformer.h.18.ln_1.bias": "model-00005-of-00006.safetensors",
|
436 |
+
"transformer.h.18.ln_1.weight": "model-00005-of-00006.safetensors",
|
437 |
+
"transformer.h.18.ln_2.bias": "model-00005-of-00006.safetensors",
|
438 |
+
"transformer.h.18.ln_2.weight": "model-00005-of-00006.safetensors",
|
439 |
+
"transformer.h.18.mlp.c_fc.bias": "model-00005-of-00006.safetensors",
|
440 |
+
"transformer.h.18.mlp.c_fc.weight": "model-00005-of-00006.safetensors",
|
441 |
+
"transformer.h.18.mlp.c_proj.bias": "model-00005-of-00006.safetensors",
|
442 |
+
"transformer.h.18.mlp.c_proj.weight": "model-00005-of-00006.safetensors",
|
443 |
+
"transformer.h.19.attn.c_attn.bias": "model-00005-of-00006.safetensors",
|
444 |
+
"transformer.h.19.attn.c_attn.weight": "model-00005-of-00006.safetensors",
|
445 |
+
"transformer.h.19.attn.c_proj.bias": "model-00005-of-00006.safetensors",
|
446 |
+
"transformer.h.19.attn.c_proj.weight": "model-00005-of-00006.safetensors",
|
447 |
+
"transformer.h.19.ln_1.bias": "model-00005-of-00006.safetensors",
|
448 |
+
"transformer.h.19.ln_1.weight": "model-00005-of-00006.safetensors",
|
449 |
+
"transformer.h.19.ln_2.bias": "model-00005-of-00006.safetensors",
|
450 |
+
"transformer.h.19.ln_2.weight": "model-00005-of-00006.safetensors",
|
451 |
+
"transformer.h.19.moe.experts.0.c_fc.bias": "model-00005-of-00006.safetensors",
|
452 |
+
"transformer.h.19.moe.experts.0.c_fc.weight": "model-00005-of-00006.safetensors",
|
453 |
+
"transformer.h.19.moe.experts.0.c_proj.bias": "model-00005-of-00006.safetensors",
|
454 |
+
"transformer.h.19.moe.experts.0.c_proj.weight": "model-00005-of-00006.safetensors",
|
455 |
+
"transformer.h.19.moe.experts.1.c_fc.bias": "model-00005-of-00006.safetensors",
|
456 |
+
"transformer.h.19.moe.experts.1.c_fc.weight": "model-00005-of-00006.safetensors",
|
457 |
+
"transformer.h.19.moe.experts.1.c_proj.bias": "model-00005-of-00006.safetensors",
|
458 |
+
"transformer.h.19.moe.experts.1.c_proj.weight": "model-00005-of-00006.safetensors",
|
459 |
+
"transformer.h.19.moe.experts.10.c_fc.bias": "model-00005-of-00006.safetensors",
|
460 |
+
"transformer.h.19.moe.experts.10.c_fc.weight": "model-00005-of-00006.safetensors",
|
461 |
+
"transformer.h.19.moe.experts.10.c_proj.bias": "model-00005-of-00006.safetensors",
|
462 |
+
"transformer.h.19.moe.experts.10.c_proj.weight": "model-00005-of-00006.safetensors",
|
463 |
+
"transformer.h.19.moe.experts.11.c_fc.bias": "model-00005-of-00006.safetensors",
|
464 |
+
"transformer.h.19.moe.experts.11.c_fc.weight": "model-00005-of-00006.safetensors",
|
465 |
+
"transformer.h.19.moe.experts.11.c_proj.bias": "model-00005-of-00006.safetensors",
|
466 |
+
"transformer.h.19.moe.experts.11.c_proj.weight": "model-00005-of-00006.safetensors",
|
467 |
+
"transformer.h.19.moe.experts.12.c_fc.bias": "model-00005-of-00006.safetensors",
|
468 |
+
"transformer.h.19.moe.experts.12.c_fc.weight": "model-00005-of-00006.safetensors",
|
469 |
+
"transformer.h.19.moe.experts.12.c_proj.bias": "model-00005-of-00006.safetensors",
|
470 |
+
"transformer.h.19.moe.experts.12.c_proj.weight": "model-00005-of-00006.safetensors",
|
471 |
+
"transformer.h.19.moe.experts.13.c_fc.bias": "model-00005-of-00006.safetensors",
|
472 |
+
"transformer.h.19.moe.experts.13.c_fc.weight": "model-00005-of-00006.safetensors",
|
473 |
+
"transformer.h.19.moe.experts.13.c_proj.bias": "model-00005-of-00006.safetensors",
|
474 |
+
"transformer.h.19.moe.experts.13.c_proj.weight": "model-00005-of-00006.safetensors",
|
475 |
+
"transformer.h.19.moe.experts.14.c_fc.bias": "model-00005-of-00006.safetensors",
|
476 |
+
"transformer.h.19.moe.experts.14.c_fc.weight": "model-00005-of-00006.safetensors",
|
477 |
+
"transformer.h.19.moe.experts.14.c_proj.bias": "model-00005-of-00006.safetensors",
|
478 |
+
"transformer.h.19.moe.experts.14.c_proj.weight": "model-00005-of-00006.safetensors",
|
479 |
+
"transformer.h.19.moe.experts.15.c_fc.bias": "model-00006-of-00006.safetensors",
|
480 |
+
"transformer.h.19.moe.experts.15.c_fc.weight": "model-00006-of-00006.safetensors",
|
481 |
+
"transformer.h.19.moe.experts.15.c_proj.bias": "model-00006-of-00006.safetensors",
|
482 |
+
"transformer.h.19.moe.experts.15.c_proj.weight": "model-00006-of-00006.safetensors",
|
483 |
+
"transformer.h.19.moe.experts.2.c_fc.bias": "model-00005-of-00006.safetensors",
|
484 |
+
"transformer.h.19.moe.experts.2.c_fc.weight": "model-00005-of-00006.safetensors",
|
485 |
+
"transformer.h.19.moe.experts.2.c_proj.bias": "model-00005-of-00006.safetensors",
|
486 |
+
"transformer.h.19.moe.experts.2.c_proj.weight": "model-00005-of-00006.safetensors",
|
487 |
+
"transformer.h.19.moe.experts.3.c_fc.bias": "model-00005-of-00006.safetensors",
|
488 |
+
"transformer.h.19.moe.experts.3.c_fc.weight": "model-00005-of-00006.safetensors",
|
489 |
+
"transformer.h.19.moe.experts.3.c_proj.bias": "model-00005-of-00006.safetensors",
|
490 |
+
"transformer.h.19.moe.experts.3.c_proj.weight": "model-00005-of-00006.safetensors",
|
491 |
+
"transformer.h.19.moe.experts.4.c_fc.bias": "model-00005-of-00006.safetensors",
|
492 |
+
"transformer.h.19.moe.experts.4.c_fc.weight": "model-00005-of-00006.safetensors",
|
493 |
+
"transformer.h.19.moe.experts.4.c_proj.bias": "model-00005-of-00006.safetensors",
|
494 |
+
"transformer.h.19.moe.experts.4.c_proj.weight": "model-00005-of-00006.safetensors",
|
495 |
+
"transformer.h.19.moe.experts.5.c_fc.bias": "model-00005-of-00006.safetensors",
|
496 |
+
"transformer.h.19.moe.experts.5.c_fc.weight": "model-00005-of-00006.safetensors",
|
497 |
+
"transformer.h.19.moe.experts.5.c_proj.bias": "model-00005-of-00006.safetensors",
|
498 |
+
"transformer.h.19.moe.experts.5.c_proj.weight": "model-00005-of-00006.safetensors",
|
499 |
+
"transformer.h.19.moe.experts.6.c_fc.bias": "model-00005-of-00006.safetensors",
|
500 |
+
"transformer.h.19.moe.experts.6.c_fc.weight": "model-00005-of-00006.safetensors",
|
501 |
+
"transformer.h.19.moe.experts.6.c_proj.bias": "model-00005-of-00006.safetensors",
|
502 |
+
"transformer.h.19.moe.experts.6.c_proj.weight": "model-00005-of-00006.safetensors",
|
503 |
+
"transformer.h.19.moe.experts.7.c_fc.bias": "model-00005-of-00006.safetensors",
|
504 |
+
"transformer.h.19.moe.experts.7.c_fc.weight": "model-00005-of-00006.safetensors",
|
505 |
+
"transformer.h.19.moe.experts.7.c_proj.bias": "model-00005-of-00006.safetensors",
|
506 |
+
"transformer.h.19.moe.experts.7.c_proj.weight": "model-00005-of-00006.safetensors",
|
507 |
+
"transformer.h.19.moe.experts.8.c_fc.bias": "model-00005-of-00006.safetensors",
|
508 |
+
"transformer.h.19.moe.experts.8.c_fc.weight": "model-00005-of-00006.safetensors",
|
509 |
+
"transformer.h.19.moe.experts.8.c_proj.bias": "model-00005-of-00006.safetensors",
|
510 |
+
"transformer.h.19.moe.experts.8.c_proj.weight": "model-00005-of-00006.safetensors",
|
511 |
+
"transformer.h.19.moe.experts.9.c_fc.bias": "model-00005-of-00006.safetensors",
|
512 |
+
"transformer.h.19.moe.experts.9.c_fc.weight": "model-00005-of-00006.safetensors",
|
513 |
+
"transformer.h.19.moe.experts.9.c_proj.bias": "model-00005-of-00006.safetensors",
|
514 |
+
"transformer.h.19.moe.experts.9.c_proj.weight": "model-00005-of-00006.safetensors",
|
515 |
+
"transformer.h.19.moe.gate.weight": "model-00005-of-00006.safetensors",
|
516 |
+
"transformer.h.2.attn.c_attn.bias": "model-00001-of-00006.safetensors",
|
517 |
+
"transformer.h.2.attn.c_attn.weight": "model-00001-of-00006.safetensors",
|
518 |
+
"transformer.h.2.attn.c_proj.bias": "model-00001-of-00006.safetensors",
|
519 |
+
"transformer.h.2.attn.c_proj.weight": "model-00001-of-00006.safetensors",
|
520 |
+
"transformer.h.2.ln_1.bias": "model-00001-of-00006.safetensors",
|
521 |
+
"transformer.h.2.ln_1.weight": "model-00001-of-00006.safetensors",
|
522 |
+
"transformer.h.2.ln_2.bias": "model-00001-of-00006.safetensors",
|
523 |
+
"transformer.h.2.ln_2.weight": "model-00001-of-00006.safetensors",
|
524 |
+
"transformer.h.2.mlp.c_fc.bias": "model-00001-of-00006.safetensors",
|
525 |
+
"transformer.h.2.mlp.c_fc.weight": "model-00001-of-00006.safetensors",
|
526 |
+
"transformer.h.2.mlp.c_proj.bias": "model-00001-of-00006.safetensors",
|
527 |
+
"transformer.h.2.mlp.c_proj.weight": "model-00001-of-00006.safetensors",
|
528 |
+
"transformer.h.20.attn.c_attn.bias": "model-00006-of-00006.safetensors",
|
529 |
+
"transformer.h.20.attn.c_attn.weight": "model-00006-of-00006.safetensors",
|
530 |
+
"transformer.h.20.attn.c_proj.bias": "model-00006-of-00006.safetensors",
|
531 |
+
"transformer.h.20.attn.c_proj.weight": "model-00006-of-00006.safetensors",
|
532 |
+
"transformer.h.20.ln_1.bias": "model-00006-of-00006.safetensors",
|
533 |
+
"transformer.h.20.ln_1.weight": "model-00006-of-00006.safetensors",
|
534 |
+
"transformer.h.20.ln_2.bias": "model-00006-of-00006.safetensors",
|
535 |
+
"transformer.h.20.ln_2.weight": "model-00006-of-00006.safetensors",
|
536 |
+
"transformer.h.20.mlp.c_fc.bias": "model-00006-of-00006.safetensors",
|
537 |
+
"transformer.h.20.mlp.c_fc.weight": "model-00006-of-00006.safetensors",
|
538 |
+
"transformer.h.20.mlp.c_proj.bias": "model-00006-of-00006.safetensors",
|
539 |
+
"transformer.h.20.mlp.c_proj.weight": "model-00006-of-00006.safetensors",
|
540 |
+
"transformer.h.21.attn.c_attn.bias": "model-00006-of-00006.safetensors",
|
541 |
+
"transformer.h.21.attn.c_attn.weight": "model-00006-of-00006.safetensors",
|
542 |
+
"transformer.h.21.attn.c_proj.bias": "model-00006-of-00006.safetensors",
|
543 |
+
"transformer.h.21.attn.c_proj.weight": "model-00006-of-00006.safetensors",
|
544 |
+
"transformer.h.21.ln_1.bias": "model-00006-of-00006.safetensors",
|
545 |
+
"transformer.h.21.ln_1.weight": "model-00006-of-00006.safetensors",
|
546 |
+
"transformer.h.21.ln_2.bias": "model-00006-of-00006.safetensors",
|
547 |
+
"transformer.h.21.ln_2.weight": "model-00006-of-00006.safetensors",
|
548 |
+
"transformer.h.21.moe.experts.0.c_fc.bias": "model-00006-of-00006.safetensors",
|
549 |
+
"transformer.h.21.moe.experts.0.c_fc.weight": "model-00006-of-00006.safetensors",
|
550 |
+
"transformer.h.21.moe.experts.0.c_proj.bias": "model-00006-of-00006.safetensors",
|
551 |
+
"transformer.h.21.moe.experts.0.c_proj.weight": "model-00006-of-00006.safetensors",
|
552 |
+
"transformer.h.21.moe.experts.1.c_fc.bias": "model-00006-of-00006.safetensors",
|
553 |
+
"transformer.h.21.moe.experts.1.c_fc.weight": "model-00006-of-00006.safetensors",
|
554 |
+
"transformer.h.21.moe.experts.1.c_proj.bias": "model-00006-of-00006.safetensors",
|
555 |
+
"transformer.h.21.moe.experts.1.c_proj.weight": "model-00006-of-00006.safetensors",
|
556 |
+
"transformer.h.21.moe.experts.10.c_fc.bias": "model-00006-of-00006.safetensors",
|
557 |
+
"transformer.h.21.moe.experts.10.c_fc.weight": "model-00006-of-00006.safetensors",
|
558 |
+
"transformer.h.21.moe.experts.10.c_proj.bias": "model-00006-of-00006.safetensors",
|
559 |
+
"transformer.h.21.moe.experts.10.c_proj.weight": "model-00006-of-00006.safetensors",
|
560 |
+
"transformer.h.21.moe.experts.11.c_fc.bias": "model-00006-of-00006.safetensors",
|
561 |
+
"transformer.h.21.moe.experts.11.c_fc.weight": "model-00006-of-00006.safetensors",
|
562 |
+
"transformer.h.21.moe.experts.11.c_proj.bias": "model-00006-of-00006.safetensors",
|
563 |
+
"transformer.h.21.moe.experts.11.c_proj.weight": "model-00006-of-00006.safetensors",
|
564 |
+
"transformer.h.21.moe.experts.12.c_fc.bias": "model-00006-of-00006.safetensors",
|
565 |
+
"transformer.h.21.moe.experts.12.c_fc.weight": "model-00006-of-00006.safetensors",
|
566 |
+
"transformer.h.21.moe.experts.12.c_proj.bias": "model-00006-of-00006.safetensors",
|
567 |
+
"transformer.h.21.moe.experts.12.c_proj.weight": "model-00006-of-00006.safetensors",
|
568 |
+
"transformer.h.21.moe.experts.13.c_fc.bias": "model-00006-of-00006.safetensors",
|
569 |
+
"transformer.h.21.moe.experts.13.c_fc.weight": "model-00006-of-00006.safetensors",
|
570 |
+
"transformer.h.21.moe.experts.13.c_proj.bias": "model-00006-of-00006.safetensors",
|
571 |
+
"transformer.h.21.moe.experts.13.c_proj.weight": "model-00006-of-00006.safetensors",
|
572 |
+
"transformer.h.21.moe.experts.14.c_fc.bias": "model-00006-of-00006.safetensors",
|
573 |
+
"transformer.h.21.moe.experts.14.c_fc.weight": "model-00006-of-00006.safetensors",
|
574 |
+
"transformer.h.21.moe.experts.14.c_proj.bias": "model-00006-of-00006.safetensors",
|
575 |
+
"transformer.h.21.moe.experts.14.c_proj.weight": "model-00006-of-00006.safetensors",
|
576 |
+
"transformer.h.21.moe.experts.15.c_fc.bias": "model-00006-of-00006.safetensors",
|
577 |
+
"transformer.h.21.moe.experts.15.c_fc.weight": "model-00006-of-00006.safetensors",
|
578 |
+
"transformer.h.21.moe.experts.15.c_proj.bias": "model-00006-of-00006.safetensors",
|
579 |
+
"transformer.h.21.moe.experts.15.c_proj.weight": "model-00006-of-00006.safetensors",
|
580 |
+
"transformer.h.21.moe.experts.2.c_fc.bias": "model-00006-of-00006.safetensors",
|
581 |
+
"transformer.h.21.moe.experts.2.c_fc.weight": "model-00006-of-00006.safetensors",
|
582 |
+
"transformer.h.21.moe.experts.2.c_proj.bias": "model-00006-of-00006.safetensors",
|
583 |
+
"transformer.h.21.moe.experts.2.c_proj.weight": "model-00006-of-00006.safetensors",
|
584 |
+
"transformer.h.21.moe.experts.3.c_fc.bias": "model-00006-of-00006.safetensors",
|
585 |
+
"transformer.h.21.moe.experts.3.c_fc.weight": "model-00006-of-00006.safetensors",
|
586 |
+
"transformer.h.21.moe.experts.3.c_proj.bias": "model-00006-of-00006.safetensors",
|
587 |
+
"transformer.h.21.moe.experts.3.c_proj.weight": "model-00006-of-00006.safetensors",
|
588 |
+
"transformer.h.21.moe.experts.4.c_fc.bias": "model-00006-of-00006.safetensors",
|
589 |
+
"transformer.h.21.moe.experts.4.c_fc.weight": "model-00006-of-00006.safetensors",
|
590 |
+
"transformer.h.21.moe.experts.4.c_proj.bias": "model-00006-of-00006.safetensors",
|
591 |
+
"transformer.h.21.moe.experts.4.c_proj.weight": "model-00006-of-00006.safetensors",
|
592 |
+
"transformer.h.21.moe.experts.5.c_fc.bias": "model-00006-of-00006.safetensors",
|
593 |
+
"transformer.h.21.moe.experts.5.c_fc.weight": "model-00006-of-00006.safetensors",
|
594 |
+
"transformer.h.21.moe.experts.5.c_proj.bias": "model-00006-of-00006.safetensors",
|
595 |
+
"transformer.h.21.moe.experts.5.c_proj.weight": "model-00006-of-00006.safetensors",
|
596 |
+
"transformer.h.21.moe.experts.6.c_fc.bias": "model-00006-of-00006.safetensors",
|
597 |
+
"transformer.h.21.moe.experts.6.c_fc.weight": "model-00006-of-00006.safetensors",
|
598 |
+
"transformer.h.21.moe.experts.6.c_proj.bias": "model-00006-of-00006.safetensors",
|
599 |
+
"transformer.h.21.moe.experts.6.c_proj.weight": "model-00006-of-00006.safetensors",
|
600 |
+
"transformer.h.21.moe.experts.7.c_fc.bias": "model-00006-of-00006.safetensors",
|
601 |
+
"transformer.h.21.moe.experts.7.c_fc.weight": "model-00006-of-00006.safetensors",
|
602 |
+
"transformer.h.21.moe.experts.7.c_proj.bias": "model-00006-of-00006.safetensors",
|
603 |
+
"transformer.h.21.moe.experts.7.c_proj.weight": "model-00006-of-00006.safetensors",
|
604 |
+
"transformer.h.21.moe.experts.8.c_fc.bias": "model-00006-of-00006.safetensors",
|
605 |
+
"transformer.h.21.moe.experts.8.c_fc.weight": "model-00006-of-00006.safetensors",
|
606 |
+
"transformer.h.21.moe.experts.8.c_proj.bias": "model-00006-of-00006.safetensors",
|
607 |
+
"transformer.h.21.moe.experts.8.c_proj.weight": "model-00006-of-00006.safetensors",
|
608 |
+
"transformer.h.21.moe.experts.9.c_fc.bias": "model-00006-of-00006.safetensors",
|
609 |
+
"transformer.h.21.moe.experts.9.c_fc.weight": "model-00006-of-00006.safetensors",
|
610 |
+
"transformer.h.21.moe.experts.9.c_proj.bias": "model-00006-of-00006.safetensors",
|
611 |
+
"transformer.h.21.moe.experts.9.c_proj.weight": "model-00006-of-00006.safetensors",
|
612 |
+
"transformer.h.21.moe.gate.weight": "model-00006-of-00006.safetensors",
|
613 |
+
"transformer.h.22.attn.c_attn.bias": "model-00006-of-00006.safetensors",
|
614 |
+
"transformer.h.22.attn.c_attn.weight": "model-00006-of-00006.safetensors",
|
615 |
+
"transformer.h.22.attn.c_proj.bias": "model-00006-of-00006.safetensors",
|
616 |
+
"transformer.h.22.attn.c_proj.weight": "model-00006-of-00006.safetensors",
|
617 |
+
"transformer.h.22.ln_1.bias": "model-00006-of-00006.safetensors",
|
618 |
+
"transformer.h.22.ln_1.weight": "model-00006-of-00006.safetensors",
|
619 |
+
"transformer.h.22.ln_2.bias": "model-00006-of-00006.safetensors",
|
620 |
+
"transformer.h.22.ln_2.weight": "model-00006-of-00006.safetensors",
|
621 |
+
"transformer.h.22.mlp.c_fc.bias": "model-00006-of-00006.safetensors",
|
622 |
+
"transformer.h.22.mlp.c_fc.weight": "model-00006-of-00006.safetensors",
|
623 |
+
"transformer.h.22.mlp.c_proj.bias": "model-00006-of-00006.safetensors",
|
624 |
+
"transformer.h.22.mlp.c_proj.weight": "model-00006-of-00006.safetensors",
|
625 |
+
"transformer.h.23.attn.c_attn.bias": "model-00006-of-00006.safetensors",
|
626 |
+
"transformer.h.23.attn.c_attn.weight": "model-00006-of-00006.safetensors",
|
627 |
+
"transformer.h.23.attn.c_proj.bias": "model-00006-of-00006.safetensors",
|
628 |
+
"transformer.h.23.attn.c_proj.weight": "model-00006-of-00006.safetensors",
|
629 |
+
"transformer.h.23.ln_1.bias": "model-00006-of-00006.safetensors",
|
630 |
+
"transformer.h.23.ln_1.weight": "model-00006-of-00006.safetensors",
|
631 |
+
"transformer.h.23.ln_2.bias": "model-00006-of-00006.safetensors",
|
632 |
+
"transformer.h.23.ln_2.weight": "model-00006-of-00006.safetensors",
|
633 |
+
"transformer.h.23.moe.experts.0.c_fc.bias": "model-00006-of-00006.safetensors",
|
634 |
+
"transformer.h.23.moe.experts.0.c_fc.weight": "model-00006-of-00006.safetensors",
|
635 |
+
"transformer.h.23.moe.experts.0.c_proj.bias": "model-00006-of-00006.safetensors",
|
636 |
+
"transformer.h.23.moe.experts.0.c_proj.weight": "model-00006-of-00006.safetensors",
|
637 |
+
"transformer.h.23.moe.experts.1.c_fc.bias": "model-00006-of-00006.safetensors",
|
638 |
+
"transformer.h.23.moe.experts.1.c_fc.weight": "model-00006-of-00006.safetensors",
|
639 |
+
"transformer.h.23.moe.experts.1.c_proj.bias": "model-00006-of-00006.safetensors",
|
640 |
+
"transformer.h.23.moe.experts.1.c_proj.weight": "model-00006-of-00006.safetensors",
|
641 |
+
"transformer.h.23.moe.experts.10.c_fc.bias": "model-00006-of-00006.safetensors",
|
642 |
+
"transformer.h.23.moe.experts.10.c_fc.weight": "model-00006-of-00006.safetensors",
|
643 |
+
"transformer.h.23.moe.experts.10.c_proj.bias": "model-00006-of-00006.safetensors",
|
644 |
+
"transformer.h.23.moe.experts.10.c_proj.weight": "model-00006-of-00006.safetensors",
|
645 |
+
"transformer.h.23.moe.experts.11.c_fc.bias": "model-00006-of-00006.safetensors",
|
646 |
+
"transformer.h.23.moe.experts.11.c_fc.weight": "model-00006-of-00006.safetensors",
|
647 |
+
"transformer.h.23.moe.experts.11.c_proj.bias": "model-00006-of-00006.safetensors",
|
648 |
+
"transformer.h.23.moe.experts.11.c_proj.weight": "model-00006-of-00006.safetensors",
|
649 |
+
"transformer.h.23.moe.experts.12.c_fc.bias": "model-00006-of-00006.safetensors",
|
650 |
+
"transformer.h.23.moe.experts.12.c_fc.weight": "model-00006-of-00006.safetensors",
|
651 |
+
"transformer.h.23.moe.experts.12.c_proj.bias": "model-00006-of-00006.safetensors",
|
652 |
+
"transformer.h.23.moe.experts.12.c_proj.weight": "model-00006-of-00006.safetensors",
|
653 |
+
"transformer.h.23.moe.experts.13.c_fc.bias": "model-00006-of-00006.safetensors",
|
654 |
+
"transformer.h.23.moe.experts.13.c_fc.weight": "model-00006-of-00006.safetensors",
|
655 |
+
"transformer.h.23.moe.experts.13.c_proj.bias": "model-00006-of-00006.safetensors",
|
656 |
+
"transformer.h.23.moe.experts.13.c_proj.weight": "model-00006-of-00006.safetensors",
|
657 |
+
"transformer.h.23.moe.experts.14.c_fc.bias": "model-00006-of-00006.safetensors",
|
658 |
+
"transformer.h.23.moe.experts.14.c_fc.weight": "model-00006-of-00006.safetensors",
|
659 |
+
"transformer.h.23.moe.experts.14.c_proj.bias": "model-00006-of-00006.safetensors",
|
660 |
+
"transformer.h.23.moe.experts.14.c_proj.weight": "model-00006-of-00006.safetensors",
|
661 |
+
"transformer.h.23.moe.experts.15.c_fc.bias": "model-00006-of-00006.safetensors",
|
662 |
+
"transformer.h.23.moe.experts.15.c_fc.weight": "model-00006-of-00006.safetensors",
|
663 |
+
"transformer.h.23.moe.experts.15.c_proj.bias": "model-00006-of-00006.safetensors",
|
664 |
+
"transformer.h.23.moe.experts.15.c_proj.weight": "model-00006-of-00006.safetensors",
|
665 |
+
"transformer.h.23.moe.experts.2.c_fc.bias": "model-00006-of-00006.safetensors",
|
666 |
+
"transformer.h.23.moe.experts.2.c_fc.weight": "model-00006-of-00006.safetensors",
|
667 |
+
"transformer.h.23.moe.experts.2.c_proj.bias": "model-00006-of-00006.safetensors",
|
668 |
+
"transformer.h.23.moe.experts.2.c_proj.weight": "model-00006-of-00006.safetensors",
|
669 |
+
"transformer.h.23.moe.experts.3.c_fc.bias": "model-00006-of-00006.safetensors",
|
670 |
+
"transformer.h.23.moe.experts.3.c_fc.weight": "model-00006-of-00006.safetensors",
|
671 |
+
"transformer.h.23.moe.experts.3.c_proj.bias": "model-00006-of-00006.safetensors",
|
672 |
+
"transformer.h.23.moe.experts.3.c_proj.weight": "model-00006-of-00006.safetensors",
|
673 |
+
"transformer.h.23.moe.experts.4.c_fc.bias": "model-00006-of-00006.safetensors",
|
674 |
+
"transformer.h.23.moe.experts.4.c_fc.weight": "model-00006-of-00006.safetensors",
|
675 |
+
"transformer.h.23.moe.experts.4.c_proj.bias": "model-00006-of-00006.safetensors",
|
676 |
+
"transformer.h.23.moe.experts.4.c_proj.weight": "model-00006-of-00006.safetensors",
|
677 |
+
"transformer.h.23.moe.experts.5.c_fc.bias": "model-00006-of-00006.safetensors",
|
678 |
+
"transformer.h.23.moe.experts.5.c_fc.weight": "model-00006-of-00006.safetensors",
|
679 |
+
"transformer.h.23.moe.experts.5.c_proj.bias": "model-00006-of-00006.safetensors",
|
680 |
+
"transformer.h.23.moe.experts.5.c_proj.weight": "model-00006-of-00006.safetensors",
|
681 |
+
"transformer.h.23.moe.experts.6.c_fc.bias": "model-00006-of-00006.safetensors",
|
682 |
+
"transformer.h.23.moe.experts.6.c_fc.weight": "model-00006-of-00006.safetensors",
|
683 |
+
"transformer.h.23.moe.experts.6.c_proj.bias": "model-00006-of-00006.safetensors",
|
684 |
+
"transformer.h.23.moe.experts.6.c_proj.weight": "model-00006-of-00006.safetensors",
|
685 |
+
"transformer.h.23.moe.experts.7.c_fc.bias": "model-00006-of-00006.safetensors",
|
686 |
+
"transformer.h.23.moe.experts.7.c_fc.weight": "model-00006-of-00006.safetensors",
|
687 |
+
"transformer.h.23.moe.experts.7.c_proj.bias": "model-00006-of-00006.safetensors",
|
688 |
+
"transformer.h.23.moe.experts.7.c_proj.weight": "model-00006-of-00006.safetensors",
|
689 |
+
"transformer.h.23.moe.experts.8.c_fc.bias": "model-00006-of-00006.safetensors",
|
690 |
+
"transformer.h.23.moe.experts.8.c_fc.weight": "model-00006-of-00006.safetensors",
|
691 |
+
"transformer.h.23.moe.experts.8.c_proj.bias": "model-00006-of-00006.safetensors",
|
692 |
+
"transformer.h.23.moe.experts.8.c_proj.weight": "model-00006-of-00006.safetensors",
|
693 |
+
"transformer.h.23.moe.experts.9.c_fc.bias": "model-00006-of-00006.safetensors",
|
694 |
+
"transformer.h.23.moe.experts.9.c_fc.weight": "model-00006-of-00006.safetensors",
|
695 |
+
"transformer.h.23.moe.experts.9.c_proj.bias": "model-00006-of-00006.safetensors",
|
696 |
+
"transformer.h.23.moe.experts.9.c_proj.weight": "model-00006-of-00006.safetensors",
|
697 |
+
"transformer.h.23.moe.gate.weight": "model-00006-of-00006.safetensors",
|
698 |
+
"transformer.h.3.attn.c_attn.bias": "model-00001-of-00006.safetensors",
|
699 |
+
"transformer.h.3.attn.c_attn.weight": "model-00001-of-00006.safetensors",
|
700 |
+
"transformer.h.3.attn.c_proj.bias": "model-00001-of-00006.safetensors",
|
701 |
+
"transformer.h.3.attn.c_proj.weight": "model-00001-of-00006.safetensors",
|
702 |
+
"transformer.h.3.ln_1.bias": "model-00001-of-00006.safetensors",
|
703 |
+
"transformer.h.3.ln_1.weight": "model-00001-of-00006.safetensors",
|
704 |
+
"transformer.h.3.ln_2.bias": "model-00001-of-00006.safetensors",
|
705 |
+
"transformer.h.3.ln_2.weight": "model-00001-of-00006.safetensors",
|
706 |
+
"transformer.h.3.moe.experts.0.c_fc.bias": "model-00001-of-00006.safetensors",
|
707 |
+
"transformer.h.3.moe.experts.0.c_fc.weight": "model-00001-of-00006.safetensors",
|
708 |
+
"transformer.h.3.moe.experts.0.c_proj.bias": "model-00001-of-00006.safetensors",
|
709 |
+
"transformer.h.3.moe.experts.0.c_proj.weight": "model-00001-of-00006.safetensors",
|
710 |
+
"transformer.h.3.moe.experts.1.c_fc.bias": "model-00001-of-00006.safetensors",
|
711 |
+
"transformer.h.3.moe.experts.1.c_fc.weight": "model-00001-of-00006.safetensors",
|
712 |
+
"transformer.h.3.moe.experts.1.c_proj.bias": "model-00001-of-00006.safetensors",
|
713 |
+
"transformer.h.3.moe.experts.1.c_proj.weight": "model-00001-of-00006.safetensors",
|
714 |
+
"transformer.h.3.moe.experts.10.c_fc.bias": "model-00001-of-00006.safetensors",
|
715 |
+
"transformer.h.3.moe.experts.10.c_fc.weight": "model-00001-of-00006.safetensors",
|
716 |
+
"transformer.h.3.moe.experts.10.c_proj.bias": "model-00001-of-00006.safetensors",
|
717 |
+
"transformer.h.3.moe.experts.10.c_proj.weight": "model-00001-of-00006.safetensors",
|
718 |
+
"transformer.h.3.moe.experts.11.c_fc.bias": "model-00002-of-00006.safetensors",
|
719 |
+
"transformer.h.3.moe.experts.11.c_fc.weight": "model-00002-of-00006.safetensors",
|
720 |
+
"transformer.h.3.moe.experts.11.c_proj.bias": "model-00002-of-00006.safetensors",
|
721 |
+
"transformer.h.3.moe.experts.11.c_proj.weight": "model-00002-of-00006.safetensors",
|
722 |
+
"transformer.h.3.moe.experts.12.c_fc.bias": "model-00002-of-00006.safetensors",
|
723 |
+
"transformer.h.3.moe.experts.12.c_fc.weight": "model-00002-of-00006.safetensors",
|
724 |
+
"transformer.h.3.moe.experts.12.c_proj.bias": "model-00002-of-00006.safetensors",
|
725 |
+
"transformer.h.3.moe.experts.12.c_proj.weight": "model-00002-of-00006.safetensors",
|
726 |
+
"transformer.h.3.moe.experts.13.c_fc.bias": "model-00002-of-00006.safetensors",
|
727 |
+
"transformer.h.3.moe.experts.13.c_fc.weight": "model-00002-of-00006.safetensors",
|
728 |
+
"transformer.h.3.moe.experts.13.c_proj.bias": "model-00002-of-00006.safetensors",
|
729 |
+
"transformer.h.3.moe.experts.13.c_proj.weight": "model-00002-of-00006.safetensors",
|
730 |
+
"transformer.h.3.moe.experts.14.c_fc.bias": "model-00002-of-00006.safetensors",
|
731 |
+
"transformer.h.3.moe.experts.14.c_fc.weight": "model-00002-of-00006.safetensors",
|
732 |
+
"transformer.h.3.moe.experts.14.c_proj.bias": "model-00002-of-00006.safetensors",
|
733 |
+
"transformer.h.3.moe.experts.14.c_proj.weight": "model-00002-of-00006.safetensors",
|
734 |
+
"transformer.h.3.moe.experts.15.c_fc.bias": "model-00002-of-00006.safetensors",
|
735 |
+
"transformer.h.3.moe.experts.15.c_fc.weight": "model-00002-of-00006.safetensors",
|
736 |
+
"transformer.h.3.moe.experts.15.c_proj.bias": "model-00002-of-00006.safetensors",
|
737 |
+
"transformer.h.3.moe.experts.15.c_proj.weight": "model-00002-of-00006.safetensors",
|
738 |
+
"transformer.h.3.moe.experts.2.c_fc.bias": "model-00001-of-00006.safetensors",
|
739 |
+
"transformer.h.3.moe.experts.2.c_fc.weight": "model-00001-of-00006.safetensors",
|
740 |
+
"transformer.h.3.moe.experts.2.c_proj.bias": "model-00001-of-00006.safetensors",
|
741 |
+
"transformer.h.3.moe.experts.2.c_proj.weight": "model-00001-of-00006.safetensors",
|
742 |
+
"transformer.h.3.moe.experts.3.c_fc.bias": "model-00001-of-00006.safetensors",
|
743 |
+
"transformer.h.3.moe.experts.3.c_fc.weight": "model-00001-of-00006.safetensors",
|
744 |
+
"transformer.h.3.moe.experts.3.c_proj.bias": "model-00001-of-00006.safetensors",
|
745 |
+
"transformer.h.3.moe.experts.3.c_proj.weight": "model-00001-of-00006.safetensors",
|
746 |
+
"transformer.h.3.moe.experts.4.c_fc.bias": "model-00001-of-00006.safetensors",
|
747 |
+
"transformer.h.3.moe.experts.4.c_fc.weight": "model-00001-of-00006.safetensors",
|
748 |
+
"transformer.h.3.moe.experts.4.c_proj.bias": "model-00001-of-00006.safetensors",
|
749 |
+
"transformer.h.3.moe.experts.4.c_proj.weight": "model-00001-of-00006.safetensors",
|
750 |
+
"transformer.h.3.moe.experts.5.c_fc.bias": "model-00001-of-00006.safetensors",
|
751 |
+
"transformer.h.3.moe.experts.5.c_fc.weight": "model-00001-of-00006.safetensors",
|
752 |
+
"transformer.h.3.moe.experts.5.c_proj.bias": "model-00001-of-00006.safetensors",
|
753 |
+
"transformer.h.3.moe.experts.5.c_proj.weight": "model-00001-of-00006.safetensors",
|
754 |
+
"transformer.h.3.moe.experts.6.c_fc.bias": "model-00001-of-00006.safetensors",
|
755 |
+
"transformer.h.3.moe.experts.6.c_fc.weight": "model-00001-of-00006.safetensors",
|
756 |
+
"transformer.h.3.moe.experts.6.c_proj.bias": "model-00001-of-00006.safetensors",
|
757 |
+
"transformer.h.3.moe.experts.6.c_proj.weight": "model-00001-of-00006.safetensors",
|
758 |
+
"transformer.h.3.moe.experts.7.c_fc.bias": "model-00001-of-00006.safetensors",
|
759 |
+
"transformer.h.3.moe.experts.7.c_fc.weight": "model-00001-of-00006.safetensors",
|
760 |
+
"transformer.h.3.moe.experts.7.c_proj.bias": "model-00001-of-00006.safetensors",
|
761 |
+
"transformer.h.3.moe.experts.7.c_proj.weight": "model-00001-of-00006.safetensors",
|
762 |
+
"transformer.h.3.moe.experts.8.c_fc.bias": "model-00001-of-00006.safetensors",
|
763 |
+
"transformer.h.3.moe.experts.8.c_fc.weight": "model-00001-of-00006.safetensors",
|
764 |
+
"transformer.h.3.moe.experts.8.c_proj.bias": "model-00001-of-00006.safetensors",
|
765 |
+
"transformer.h.3.moe.experts.8.c_proj.weight": "model-00001-of-00006.safetensors",
|
766 |
+
"transformer.h.3.moe.experts.9.c_fc.bias": "model-00001-of-00006.safetensors",
|
767 |
+
"transformer.h.3.moe.experts.9.c_fc.weight": "model-00001-of-00006.safetensors",
|
768 |
+
"transformer.h.3.moe.experts.9.c_proj.bias": "model-00001-of-00006.safetensors",
|
769 |
+
"transformer.h.3.moe.experts.9.c_proj.weight": "model-00001-of-00006.safetensors",
|
770 |
+
"transformer.h.3.moe.gate.weight": "model-00001-of-00006.safetensors",
|
771 |
+
"transformer.h.4.attn.c_attn.bias": "model-00002-of-00006.safetensors",
|
772 |
+
"transformer.h.4.attn.c_attn.weight": "model-00002-of-00006.safetensors",
|
773 |
+
"transformer.h.4.attn.c_proj.bias": "model-00002-of-00006.safetensors",
|
774 |
+
"transformer.h.4.attn.c_proj.weight": "model-00002-of-00006.safetensors",
|
775 |
+
"transformer.h.4.ln_1.bias": "model-00002-of-00006.safetensors",
|
776 |
+
"transformer.h.4.ln_1.weight": "model-00002-of-00006.safetensors",
|
777 |
+
"transformer.h.4.ln_2.bias": "model-00002-of-00006.safetensors",
|
778 |
+
"transformer.h.4.ln_2.weight": "model-00002-of-00006.safetensors",
|
779 |
+
"transformer.h.4.mlp.c_fc.bias": "model-00002-of-00006.safetensors",
|
780 |
+
"transformer.h.4.mlp.c_fc.weight": "model-00002-of-00006.safetensors",
|
781 |
+
"transformer.h.4.mlp.c_proj.bias": "model-00002-of-00006.safetensors",
|
782 |
+
"transformer.h.4.mlp.c_proj.weight": "model-00002-of-00006.safetensors",
|
783 |
+
"transformer.h.5.attn.c_attn.bias": "model-00002-of-00006.safetensors",
|
784 |
+
"transformer.h.5.attn.c_attn.weight": "model-00002-of-00006.safetensors",
|
785 |
+
"transformer.h.5.attn.c_proj.bias": "model-00002-of-00006.safetensors",
|
786 |
+
"transformer.h.5.attn.c_proj.weight": "model-00002-of-00006.safetensors",
|
787 |
+
"transformer.h.5.ln_1.bias": "model-00002-of-00006.safetensors",
|
788 |
+
"transformer.h.5.ln_1.weight": "model-00002-of-00006.safetensors",
|
789 |
+
"transformer.h.5.ln_2.bias": "model-00002-of-00006.safetensors",
|
790 |
+
"transformer.h.5.ln_2.weight": "model-00002-of-00006.safetensors",
|
791 |
+
"transformer.h.5.moe.experts.0.c_fc.bias": "model-00002-of-00006.safetensors",
|
792 |
+
"transformer.h.5.moe.experts.0.c_fc.weight": "model-00002-of-00006.safetensors",
|
793 |
+
"transformer.h.5.moe.experts.0.c_proj.bias": "model-00002-of-00006.safetensors",
|
794 |
+
"transformer.h.5.moe.experts.0.c_proj.weight": "model-00002-of-00006.safetensors",
|
795 |
+
"transformer.h.5.moe.experts.1.c_fc.bias": "model-00002-of-00006.safetensors",
|
796 |
+
"transformer.h.5.moe.experts.1.c_fc.weight": "model-00002-of-00006.safetensors",
|
797 |
+
"transformer.h.5.moe.experts.1.c_proj.bias": "model-00002-of-00006.safetensors",
|
798 |
+
"transformer.h.5.moe.experts.1.c_proj.weight": "model-00002-of-00006.safetensors",
|
799 |
+
"transformer.h.5.moe.experts.10.c_fc.bias": "model-00002-of-00006.safetensors",
|
800 |
+
"transformer.h.5.moe.experts.10.c_fc.weight": "model-00002-of-00006.safetensors",
|
801 |
+
"transformer.h.5.moe.experts.10.c_proj.bias": "model-00002-of-00006.safetensors",
|
802 |
+
"transformer.h.5.moe.experts.10.c_proj.weight": "model-00002-of-00006.safetensors",
|
803 |
+
"transformer.h.5.moe.experts.11.c_fc.bias": "model-00002-of-00006.safetensors",
|
804 |
+
"transformer.h.5.moe.experts.11.c_fc.weight": "model-00002-of-00006.safetensors",
|
805 |
+
"transformer.h.5.moe.experts.11.c_proj.bias": "model-00002-of-00006.safetensors",
|
806 |
+
"transformer.h.5.moe.experts.11.c_proj.weight": "model-00002-of-00006.safetensors",
|
807 |
+
"transformer.h.5.moe.experts.12.c_fc.bias": "model-00002-of-00006.safetensors",
|
808 |
+
"transformer.h.5.moe.experts.12.c_fc.weight": "model-00002-of-00006.safetensors",
|
809 |
+
"transformer.h.5.moe.experts.12.c_proj.bias": "model-00002-of-00006.safetensors",
|
810 |
+
"transformer.h.5.moe.experts.12.c_proj.weight": "model-00002-of-00006.safetensors",
|
811 |
+
"transformer.h.5.moe.experts.13.c_fc.bias": "model-00002-of-00006.safetensors",
|
812 |
+
"transformer.h.5.moe.experts.13.c_fc.weight": "model-00002-of-00006.safetensors",
|
813 |
+
"transformer.h.5.moe.experts.13.c_proj.bias": "model-00002-of-00006.safetensors",
|
814 |
+
"transformer.h.5.moe.experts.13.c_proj.weight": "model-00002-of-00006.safetensors",
|
815 |
+
"transformer.h.5.moe.experts.14.c_fc.bias": "model-00002-of-00006.safetensors",
|
816 |
+
"transformer.h.5.moe.experts.14.c_fc.weight": "model-00002-of-00006.safetensors",
|
817 |
+
"transformer.h.5.moe.experts.14.c_proj.bias": "model-00002-of-00006.safetensors",
|
818 |
+
"transformer.h.5.moe.experts.14.c_proj.weight": "model-00002-of-00006.safetensors",
|
819 |
+
"transformer.h.5.moe.experts.15.c_fc.bias": "model-00002-of-00006.safetensors",
|
820 |
+
"transformer.h.5.moe.experts.15.c_fc.weight": "model-00002-of-00006.safetensors",
|
821 |
+
"transformer.h.5.moe.experts.15.c_proj.bias": "model-00002-of-00006.safetensors",
|
822 |
+
"transformer.h.5.moe.experts.15.c_proj.weight": "model-00002-of-00006.safetensors",
|
823 |
+
"transformer.h.5.moe.experts.2.c_fc.bias": "model-00002-of-00006.safetensors",
|
824 |
+
"transformer.h.5.moe.experts.2.c_fc.weight": "model-00002-of-00006.safetensors",
|
825 |
+
"transformer.h.5.moe.experts.2.c_proj.bias": "model-00002-of-00006.safetensors",
|
826 |
+
"transformer.h.5.moe.experts.2.c_proj.weight": "model-00002-of-00006.safetensors",
|
827 |
+
"transformer.h.5.moe.experts.3.c_fc.bias": "model-00002-of-00006.safetensors",
|
828 |
+
"transformer.h.5.moe.experts.3.c_fc.weight": "model-00002-of-00006.safetensors",
|
829 |
+
"transformer.h.5.moe.experts.3.c_proj.bias": "model-00002-of-00006.safetensors",
|
830 |
+
"transformer.h.5.moe.experts.3.c_proj.weight": "model-00002-of-00006.safetensors",
|
831 |
+
"transformer.h.5.moe.experts.4.c_fc.bias": "model-00002-of-00006.safetensors",
|
832 |
+
"transformer.h.5.moe.experts.4.c_fc.weight": "model-00002-of-00006.safetensors",
|
833 |
+
"transformer.h.5.moe.experts.4.c_proj.bias": "model-00002-of-00006.safetensors",
|
834 |
+
"transformer.h.5.moe.experts.4.c_proj.weight": "model-00002-of-00006.safetensors",
|
835 |
+
"transformer.h.5.moe.experts.5.c_fc.bias": "model-00002-of-00006.safetensors",
|
836 |
+
"transformer.h.5.moe.experts.5.c_fc.weight": "model-00002-of-00006.safetensors",
|
837 |
+
"transformer.h.5.moe.experts.5.c_proj.bias": "model-00002-of-00006.safetensors",
|
838 |
+
"transformer.h.5.moe.experts.5.c_proj.weight": "model-00002-of-00006.safetensors",
|
839 |
+
"transformer.h.5.moe.experts.6.c_fc.bias": "model-00002-of-00006.safetensors",
|
840 |
+
"transformer.h.5.moe.experts.6.c_fc.weight": "model-00002-of-00006.safetensors",
|
841 |
+
"transformer.h.5.moe.experts.6.c_proj.bias": "model-00002-of-00006.safetensors",
|
842 |
+
"transformer.h.5.moe.experts.6.c_proj.weight": "model-00002-of-00006.safetensors",
|
843 |
+
"transformer.h.5.moe.experts.7.c_fc.bias": "model-00002-of-00006.safetensors",
|
844 |
+
"transformer.h.5.moe.experts.7.c_fc.weight": "model-00002-of-00006.safetensors",
|
845 |
+
"transformer.h.5.moe.experts.7.c_proj.bias": "model-00002-of-00006.safetensors",
|
846 |
+
"transformer.h.5.moe.experts.7.c_proj.weight": "model-00002-of-00006.safetensors",
|
847 |
+
"transformer.h.5.moe.experts.8.c_fc.bias": "model-00002-of-00006.safetensors",
|
848 |
+
"transformer.h.5.moe.experts.8.c_fc.weight": "model-00002-of-00006.safetensors",
|
849 |
+
"transformer.h.5.moe.experts.8.c_proj.bias": "model-00002-of-00006.safetensors",
|
850 |
+
"transformer.h.5.moe.experts.8.c_proj.weight": "model-00002-of-00006.safetensors",
|
851 |
+
"transformer.h.5.moe.experts.9.c_fc.bias": "model-00002-of-00006.safetensors",
|
852 |
+
"transformer.h.5.moe.experts.9.c_fc.weight": "model-00002-of-00006.safetensors",
|
853 |
+
"transformer.h.5.moe.experts.9.c_proj.bias": "model-00002-of-00006.safetensors",
|
854 |
+
"transformer.h.5.moe.experts.9.c_proj.weight": "model-00002-of-00006.safetensors",
|
855 |
+
"transformer.h.5.moe.gate.weight": "model-00002-of-00006.safetensors",
|
856 |
+
"transformer.h.6.attn.c_attn.bias": "model-00002-of-00006.safetensors",
|
857 |
+
"transformer.h.6.attn.c_attn.weight": "model-00002-of-00006.safetensors",
|
858 |
+
"transformer.h.6.attn.c_proj.bias": "model-00002-of-00006.safetensors",
|
859 |
+
"transformer.h.6.attn.c_proj.weight": "model-00002-of-00006.safetensors",
|
860 |
+
"transformer.h.6.ln_1.bias": "model-00002-of-00006.safetensors",
|
861 |
+
"transformer.h.6.ln_1.weight": "model-00002-of-00006.safetensors",
|
862 |
+
"transformer.h.6.ln_2.bias": "model-00002-of-00006.safetensors",
|
863 |
+
"transformer.h.6.ln_2.weight": "model-00002-of-00006.safetensors",
|
864 |
+
"transformer.h.6.mlp.c_fc.bias": "model-00002-of-00006.safetensors",
|
865 |
+
"transformer.h.6.mlp.c_fc.weight": "model-00002-of-00006.safetensors",
|
866 |
+
"transformer.h.6.mlp.c_proj.bias": "model-00002-of-00006.safetensors",
|
867 |
+
"transformer.h.6.mlp.c_proj.weight": "model-00002-of-00006.safetensors",
|
868 |
+
"transformer.h.7.attn.c_attn.bias": "model-00002-of-00006.safetensors",
|
869 |
+
"transformer.h.7.attn.c_attn.weight": "model-00002-of-00006.safetensors",
|
870 |
+
"transformer.h.7.attn.c_proj.bias": "model-00002-of-00006.safetensors",
|
871 |
+
"transformer.h.7.attn.c_proj.weight": "model-00002-of-00006.safetensors",
|
872 |
+
"transformer.h.7.ln_1.bias": "model-00002-of-00006.safetensors",
|
873 |
+
"transformer.h.7.ln_1.weight": "model-00002-of-00006.safetensors",
|
874 |
+
"transformer.h.7.ln_2.bias": "model-00002-of-00006.safetensors",
|
875 |
+
"transformer.h.7.ln_2.weight": "model-00002-of-00006.safetensors",
|
876 |
+
"transformer.h.7.moe.experts.0.c_fc.bias": "model-00002-of-00006.safetensors",
|
877 |
+
"transformer.h.7.moe.experts.0.c_fc.weight": "model-00002-of-00006.safetensors",
|
878 |
+
"transformer.h.7.moe.experts.0.c_proj.bias": "model-00002-of-00006.safetensors",
|
879 |
+
"transformer.h.7.moe.experts.0.c_proj.weight": "model-00002-of-00006.safetensors",
|
880 |
+
"transformer.h.7.moe.experts.1.c_fc.bias": "model-00002-of-00006.safetensors",
|
881 |
+
"transformer.h.7.moe.experts.1.c_fc.weight": "model-00002-of-00006.safetensors",
|
882 |
+
"transformer.h.7.moe.experts.1.c_proj.bias": "model-00002-of-00006.safetensors",
|
883 |
+
"transformer.h.7.moe.experts.1.c_proj.weight": "model-00002-of-00006.safetensors",
|
884 |
+
"transformer.h.7.moe.experts.10.c_fc.bias": "model-00002-of-00006.safetensors",
|
885 |
+
"transformer.h.7.moe.experts.10.c_fc.weight": "model-00002-of-00006.safetensors",
|
886 |
+
"transformer.h.7.moe.experts.10.c_proj.bias": "model-00002-of-00006.safetensors",
|
887 |
+
"transformer.h.7.moe.experts.10.c_proj.weight": "model-00002-of-00006.safetensors",
|
888 |
+
"transformer.h.7.moe.experts.11.c_fc.bias": "model-00002-of-00006.safetensors",
|
889 |
+
"transformer.h.7.moe.experts.11.c_fc.weight": "model-00002-of-00006.safetensors",
|
890 |
+
"transformer.h.7.moe.experts.11.c_proj.bias": "model-00002-of-00006.safetensors",
|
891 |
+
"transformer.h.7.moe.experts.11.c_proj.weight": "model-00002-of-00006.safetensors",
|
892 |
+
"transformer.h.7.moe.experts.12.c_fc.bias": "model-00003-of-00006.safetensors",
|
893 |
+
"transformer.h.7.moe.experts.12.c_fc.weight": "model-00003-of-00006.safetensors",
|
894 |
+
"transformer.h.7.moe.experts.12.c_proj.bias": "model-00003-of-00006.safetensors",
|
895 |
+
"transformer.h.7.moe.experts.12.c_proj.weight": "model-00003-of-00006.safetensors",
|
896 |
+
"transformer.h.7.moe.experts.13.c_fc.bias": "model-00003-of-00006.safetensors",
|
897 |
+
"transformer.h.7.moe.experts.13.c_fc.weight": "model-00003-of-00006.safetensors",
|
898 |
+
"transformer.h.7.moe.experts.13.c_proj.bias": "model-00003-of-00006.safetensors",
|
899 |
+
"transformer.h.7.moe.experts.13.c_proj.weight": "model-00003-of-00006.safetensors",
|
900 |
+
"transformer.h.7.moe.experts.14.c_fc.bias": "model-00003-of-00006.safetensors",
|
901 |
+
"transformer.h.7.moe.experts.14.c_fc.weight": "model-00003-of-00006.safetensors",
|
902 |
+
"transformer.h.7.moe.experts.14.c_proj.bias": "model-00003-of-00006.safetensors",
|
903 |
+
"transformer.h.7.moe.experts.14.c_proj.weight": "model-00003-of-00006.safetensors",
|
904 |
+
"transformer.h.7.moe.experts.15.c_fc.bias": "model-00003-of-00006.safetensors",
|
905 |
+
"transformer.h.7.moe.experts.15.c_fc.weight": "model-00003-of-00006.safetensors",
|
906 |
+
"transformer.h.7.moe.experts.15.c_proj.bias": "model-00003-of-00006.safetensors",
|
907 |
+
"transformer.h.7.moe.experts.15.c_proj.weight": "model-00003-of-00006.safetensors",
|
908 |
+
"transformer.h.7.moe.experts.2.c_fc.bias": "model-00002-of-00006.safetensors",
|
909 |
+
"transformer.h.7.moe.experts.2.c_fc.weight": "model-00002-of-00006.safetensors",
|
910 |
+
"transformer.h.7.moe.experts.2.c_proj.bias": "model-00002-of-00006.safetensors",
|
911 |
+
"transformer.h.7.moe.experts.2.c_proj.weight": "model-00002-of-00006.safetensors",
|
912 |
+
"transformer.h.7.moe.experts.3.c_fc.bias": "model-00002-of-00006.safetensors",
|
913 |
+
"transformer.h.7.moe.experts.3.c_fc.weight": "model-00002-of-00006.safetensors",
|
914 |
+
"transformer.h.7.moe.experts.3.c_proj.bias": "model-00002-of-00006.safetensors",
|
915 |
+
"transformer.h.7.moe.experts.3.c_proj.weight": "model-00002-of-00006.safetensors",
|
916 |
+
"transformer.h.7.moe.experts.4.c_fc.bias": "model-00002-of-00006.safetensors",
|
917 |
+
"transformer.h.7.moe.experts.4.c_fc.weight": "model-00002-of-00006.safetensors",
|
918 |
+
"transformer.h.7.moe.experts.4.c_proj.bias": "model-00002-of-00006.safetensors",
|
919 |
+
"transformer.h.7.moe.experts.4.c_proj.weight": "model-00002-of-00006.safetensors",
|
920 |
+
"transformer.h.7.moe.experts.5.c_fc.bias": "model-00002-of-00006.safetensors",
|
921 |
+
"transformer.h.7.moe.experts.5.c_fc.weight": "model-00002-of-00006.safetensors",
|
922 |
+
"transformer.h.7.moe.experts.5.c_proj.bias": "model-00002-of-00006.safetensors",
|
923 |
+
"transformer.h.7.moe.experts.5.c_proj.weight": "model-00002-of-00006.safetensors",
|
924 |
+
"transformer.h.7.moe.experts.6.c_fc.bias": "model-00002-of-00006.safetensors",
|
925 |
+
"transformer.h.7.moe.experts.6.c_fc.weight": "model-00002-of-00006.safetensors",
|
926 |
+
"transformer.h.7.moe.experts.6.c_proj.bias": "model-00002-of-00006.safetensors",
|
927 |
+
"transformer.h.7.moe.experts.6.c_proj.weight": "model-00002-of-00006.safetensors",
|
928 |
+
"transformer.h.7.moe.experts.7.c_fc.bias": "model-00002-of-00006.safetensors",
|
929 |
+
"transformer.h.7.moe.experts.7.c_fc.weight": "model-00002-of-00006.safetensors",
|
930 |
+
"transformer.h.7.moe.experts.7.c_proj.bias": "model-00002-of-00006.safetensors",
|
931 |
+
"transformer.h.7.moe.experts.7.c_proj.weight": "model-00002-of-00006.safetensors",
|
932 |
+
"transformer.h.7.moe.experts.8.c_fc.bias": "model-00002-of-00006.safetensors",
|
933 |
+
"transformer.h.7.moe.experts.8.c_fc.weight": "model-00002-of-00006.safetensors",
|
934 |
+
"transformer.h.7.moe.experts.8.c_proj.bias": "model-00002-of-00006.safetensors",
|
935 |
+
"transformer.h.7.moe.experts.8.c_proj.weight": "model-00002-of-00006.safetensors",
|
936 |
+
"transformer.h.7.moe.experts.9.c_fc.bias": "model-00002-of-00006.safetensors",
|
937 |
+
"transformer.h.7.moe.experts.9.c_fc.weight": "model-00002-of-00006.safetensors",
|
938 |
+
"transformer.h.7.moe.experts.9.c_proj.bias": "model-00002-of-00006.safetensors",
|
939 |
+
"transformer.h.7.moe.experts.9.c_proj.weight": "model-00002-of-00006.safetensors",
|
940 |
+
"transformer.h.7.moe.gate.weight": "model-00002-of-00006.safetensors",
|
941 |
+
"transformer.h.8.attn.c_attn.bias": "model-00003-of-00006.safetensors",
|
942 |
+
"transformer.h.8.attn.c_attn.weight": "model-00003-of-00006.safetensors",
|
943 |
+
"transformer.h.8.attn.c_proj.bias": "model-00003-of-00006.safetensors",
|
944 |
+
"transformer.h.8.attn.c_proj.weight": "model-00003-of-00006.safetensors",
|
945 |
+
"transformer.h.8.ln_1.bias": "model-00003-of-00006.safetensors",
|
946 |
+
"transformer.h.8.ln_1.weight": "model-00003-of-00006.safetensors",
|
947 |
+
"transformer.h.8.ln_2.bias": "model-00003-of-00006.safetensors",
|
948 |
+
"transformer.h.8.ln_2.weight": "model-00003-of-00006.safetensors",
|
949 |
+
"transformer.h.8.mlp.c_fc.bias": "model-00003-of-00006.safetensors",
|
950 |
+
"transformer.h.8.mlp.c_fc.weight": "model-00003-of-00006.safetensors",
|
951 |
+
"transformer.h.8.mlp.c_proj.bias": "model-00003-of-00006.safetensors",
|
952 |
+
"transformer.h.8.mlp.c_proj.weight": "model-00003-of-00006.safetensors",
|
953 |
+
"transformer.h.9.attn.c_attn.bias": "model-00003-of-00006.safetensors",
|
954 |
+
"transformer.h.9.attn.c_attn.weight": "model-00003-of-00006.safetensors",
|
955 |
+
"transformer.h.9.attn.c_proj.bias": "model-00003-of-00006.safetensors",
|
956 |
+
"transformer.h.9.attn.c_proj.weight": "model-00003-of-00006.safetensors",
|
957 |
+
"transformer.h.9.ln_1.bias": "model-00003-of-00006.safetensors",
|
958 |
+
"transformer.h.9.ln_1.weight": "model-00003-of-00006.safetensors",
|
959 |
+
"transformer.h.9.ln_2.bias": "model-00003-of-00006.safetensors",
|
960 |
+
"transformer.h.9.ln_2.weight": "model-00003-of-00006.safetensors",
|
961 |
+
"transformer.h.9.moe.experts.0.c_fc.bias": "model-00003-of-00006.safetensors",
|
962 |
+
"transformer.h.9.moe.experts.0.c_fc.weight": "model-00003-of-00006.safetensors",
|
963 |
+
"transformer.h.9.moe.experts.0.c_proj.bias": "model-00003-of-00006.safetensors",
|
964 |
+
"transformer.h.9.moe.experts.0.c_proj.weight": "model-00003-of-00006.safetensors",
|
965 |
+
"transformer.h.9.moe.experts.1.c_fc.bias": "model-00003-of-00006.safetensors",
|
966 |
+
"transformer.h.9.moe.experts.1.c_fc.weight": "model-00003-of-00006.safetensors",
|
967 |
+
"transformer.h.9.moe.experts.1.c_proj.bias": "model-00003-of-00006.safetensors",
|
968 |
+
"transformer.h.9.moe.experts.1.c_proj.weight": "model-00003-of-00006.safetensors",
|
969 |
+
"transformer.h.9.moe.experts.10.c_fc.bias": "model-00003-of-00006.safetensors",
|
970 |
+
"transformer.h.9.moe.experts.10.c_fc.weight": "model-00003-of-00006.safetensors",
|
971 |
+
"transformer.h.9.moe.experts.10.c_proj.bias": "model-00003-of-00006.safetensors",
|
972 |
+
"transformer.h.9.moe.experts.10.c_proj.weight": "model-00003-of-00006.safetensors",
|
973 |
+
"transformer.h.9.moe.experts.11.c_fc.bias": "model-00003-of-00006.safetensors",
|
974 |
+
"transformer.h.9.moe.experts.11.c_fc.weight": "model-00003-of-00006.safetensors",
|
975 |
+
"transformer.h.9.moe.experts.11.c_proj.bias": "model-00003-of-00006.safetensors",
|
976 |
+
"transformer.h.9.moe.experts.11.c_proj.weight": "model-00003-of-00006.safetensors",
|
977 |
+
"transformer.h.9.moe.experts.12.c_fc.bias": "model-00003-of-00006.safetensors",
|
978 |
+
"transformer.h.9.moe.experts.12.c_fc.weight": "model-00003-of-00006.safetensors",
|
979 |
+
"transformer.h.9.moe.experts.12.c_proj.bias": "model-00003-of-00006.safetensors",
|
980 |
+
"transformer.h.9.moe.experts.12.c_proj.weight": "model-00003-of-00006.safetensors",
|
981 |
+
"transformer.h.9.moe.experts.13.c_fc.bias": "model-00003-of-00006.safetensors",
|
982 |
+
"transformer.h.9.moe.experts.13.c_fc.weight": "model-00003-of-00006.safetensors",
|
983 |
+
"transformer.h.9.moe.experts.13.c_proj.bias": "model-00003-of-00006.safetensors",
|
984 |
+
"transformer.h.9.moe.experts.13.c_proj.weight": "model-00003-of-00006.safetensors",
|
985 |
+
"transformer.h.9.moe.experts.14.c_fc.bias": "model-00003-of-00006.safetensors",
|
986 |
+
"transformer.h.9.moe.experts.14.c_fc.weight": "model-00003-of-00006.safetensors",
|
987 |
+
"transformer.h.9.moe.experts.14.c_proj.bias": "model-00003-of-00006.safetensors",
|
988 |
+
"transformer.h.9.moe.experts.14.c_proj.weight": "model-00003-of-00006.safetensors",
|
989 |
+
"transformer.h.9.moe.experts.15.c_fc.bias": "model-00003-of-00006.safetensors",
|
990 |
+
"transformer.h.9.moe.experts.15.c_fc.weight": "model-00003-of-00006.safetensors",
|
991 |
+
"transformer.h.9.moe.experts.15.c_proj.bias": "model-00003-of-00006.safetensors",
|
992 |
+
"transformer.h.9.moe.experts.15.c_proj.weight": "model-00003-of-00006.safetensors",
|
993 |
+
"transformer.h.9.moe.experts.2.c_fc.bias": "model-00003-of-00006.safetensors",
|
994 |
+
"transformer.h.9.moe.experts.2.c_fc.weight": "model-00003-of-00006.safetensors",
|
995 |
+
"transformer.h.9.moe.experts.2.c_proj.bias": "model-00003-of-00006.safetensors",
|
996 |
+
"transformer.h.9.moe.experts.2.c_proj.weight": "model-00003-of-00006.safetensors",
|
997 |
+
"transformer.h.9.moe.experts.3.c_fc.bias": "model-00003-of-00006.safetensors",
|
998 |
+
"transformer.h.9.moe.experts.3.c_fc.weight": "model-00003-of-00006.safetensors",
|
999 |
+
"transformer.h.9.moe.experts.3.c_proj.bias": "model-00003-of-00006.safetensors",
|
1000 |
+
"transformer.h.9.moe.experts.3.c_proj.weight": "model-00003-of-00006.safetensors",
|
1001 |
+
"transformer.h.9.moe.experts.4.c_fc.bias": "model-00003-of-00006.safetensors",
|
1002 |
+
"transformer.h.9.moe.experts.4.c_fc.weight": "model-00003-of-00006.safetensors",
|
1003 |
+
"transformer.h.9.moe.experts.4.c_proj.bias": "model-00003-of-00006.safetensors",
|
1004 |
+
"transformer.h.9.moe.experts.4.c_proj.weight": "model-00003-of-00006.safetensors",
|
1005 |
+
"transformer.h.9.moe.experts.5.c_fc.bias": "model-00003-of-00006.safetensors",
|
1006 |
+
"transformer.h.9.moe.experts.5.c_fc.weight": "model-00003-of-00006.safetensors",
|
1007 |
+
"transformer.h.9.moe.experts.5.c_proj.bias": "model-00003-of-00006.safetensors",
|
1008 |
+
"transformer.h.9.moe.experts.5.c_proj.weight": "model-00003-of-00006.safetensors",
|
1009 |
+
"transformer.h.9.moe.experts.6.c_fc.bias": "model-00003-of-00006.safetensors",
|
1010 |
+
"transformer.h.9.moe.experts.6.c_fc.weight": "model-00003-of-00006.safetensors",
|
1011 |
+
"transformer.h.9.moe.experts.6.c_proj.bias": "model-00003-of-00006.safetensors",
|
1012 |
+
"transformer.h.9.moe.experts.6.c_proj.weight": "model-00003-of-00006.safetensors",
|
1013 |
+
"transformer.h.9.moe.experts.7.c_fc.bias": "model-00003-of-00006.safetensors",
|
1014 |
+
"transformer.h.9.moe.experts.7.c_fc.weight": "model-00003-of-00006.safetensors",
|
1015 |
+
"transformer.h.9.moe.experts.7.c_proj.bias": "model-00003-of-00006.safetensors",
|
1016 |
+
"transformer.h.9.moe.experts.7.c_proj.weight": "model-00003-of-00006.safetensors",
|
1017 |
+
"transformer.h.9.moe.experts.8.c_fc.bias": "model-00003-of-00006.safetensors",
|
1018 |
+
"transformer.h.9.moe.experts.8.c_fc.weight": "model-00003-of-00006.safetensors",
|
1019 |
+
"transformer.h.9.moe.experts.8.c_proj.bias": "model-00003-of-00006.safetensors",
|
1020 |
+
"transformer.h.9.moe.experts.8.c_proj.weight": "model-00003-of-00006.safetensors",
|
1021 |
+
"transformer.h.9.moe.experts.9.c_fc.bias": "model-00003-of-00006.safetensors",
|
1022 |
+
"transformer.h.9.moe.experts.9.c_fc.weight": "model-00003-of-00006.safetensors",
|
1023 |
+
"transformer.h.9.moe.experts.9.c_proj.bias": "model-00003-of-00006.safetensors",
|
1024 |
+
"transformer.h.9.moe.experts.9.c_proj.weight": "model-00003-of-00006.safetensors",
|
1025 |
+
"transformer.h.9.moe.gate.weight": "model-00003-of-00006.safetensors",
|
1026 |
+
"transformer.ln_f.bias": "model-00006-of-00006.safetensors",
|
1027 |
+
"transformer.ln_f.weight": "model-00006-of-00006.safetensors",
|
1028 |
+
"transformer.wpe.weight": "model-00001-of-00006.safetensors",
|
1029 |
+
"transformer.wte.weight": "model-00001-of-00006.safetensors"
|
1030 |
+
}
|
1031 |
+
}
|
modeling_lola_gpt2.py
ADDED
@@ -0,0 +1,667 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This script provides an implementation of GPT2 based mixture-of-experts model.
|
2 |
+
# Most of its functionality is copied from existing GPT2 implementation on huggingface: https://huggingface.co/docs/transformers/v4.20.1/en/model_doc/gpt2
|
3 |
+
# MoE layers are inspired by Mixtral: https://huggingface.co/docs/transformers/v4.39.1/en/model_doc/mixtral
|
4 |
+
# There are however, slight differences in this implementation to adapt it to behave like DeepSpeed Megatron's GPT2 MoE: https://github.com/microsoft/Megatron-DeepSpeed/blob/main/examples_deepspeed/MoE/ds_pretrain_gpt_1.3B_MoE128.sh
|
5 |
+
# Please note: Most of the the features from DeepSpeed Megatron's GPT MoE are **not** implemented here.
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
from typing import Optional, Tuple, Union
|
9 |
+
|
10 |
+
from .configuration_lola_gpt2 import LOLAConfig
|
11 |
+
import torch
|
12 |
+
import torch.utils.checkpoint
|
13 |
+
from torch import nn
|
14 |
+
import torch.nn.functional as F
|
15 |
+
from torch.nn import CrossEntropyLoss
|
16 |
+
|
17 |
+
from transformers.modeling_outputs import (
|
18 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
19 |
+
SequenceClassifierOutputWithPast,
|
20 |
+
QuestionAnsweringModelOutput
|
21 |
+
)
|
22 |
+
from transformers.modeling_utils import SequenceSummary
|
23 |
+
from transformers.pytorch_utils import Conv1D
|
24 |
+
from transformers.utils import (
|
25 |
+
logging
|
26 |
+
)
|
27 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
28 |
+
|
29 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2Attention, GPT2MLP, GPT2Block, GPT2PreTrainedModel
|
30 |
+
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel, GPT2DoubleHeadsModel, GPT2ForSequenceClassification, GPT2ForTokenClassification
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
# LOLA
|
36 |
+
class LOLAModel(GPT2PreTrainedModel):
|
37 |
+
|
38 |
+
config_class = LOLAConfig
|
39 |
+
|
40 |
+
def __init__(self, config):
|
41 |
+
super().__init__(config)
|
42 |
+
|
43 |
+
self.embed_dim = config.hidden_size
|
44 |
+
|
45 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
46 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
47 |
+
|
48 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
49 |
+
self.h = nn.ModuleList([
|
50 |
+
GPT2Block(config, layer_idx=i) if i % 2 == 0 else LOLABlock(config, layer_idx=i) for i in range(config.num_hidden_layers)
|
51 |
+
])
|
52 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
53 |
+
|
54 |
+
# Model parallel
|
55 |
+
self.model_parallel = False
|
56 |
+
self.device_map = None
|
57 |
+
self.gradient_checkpointing = False
|
58 |
+
|
59 |
+
# Initialize weights and apply final processing
|
60 |
+
self.post_init()
|
61 |
+
|
62 |
+
|
63 |
+
def parallelize(self, device_map=None):
|
64 |
+
# Check validity of device_map
|
65 |
+
warnings.warn(
|
66 |
+
"`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
67 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
68 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
69 |
+
" ...}",
|
70 |
+
FutureWarning,
|
71 |
+
)
|
72 |
+
self.device_map = (
|
73 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
74 |
+
)
|
75 |
+
assert_device_map(self.device_map, len(self.h))
|
76 |
+
self.model_parallel = True
|
77 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
78 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
79 |
+
self.wte = self.wte.to(self.first_device)
|
80 |
+
self.wpe = self.wpe.to(self.first_device)
|
81 |
+
# Load onto devices
|
82 |
+
for k, v in self.device_map.items():
|
83 |
+
for block in v:
|
84 |
+
cuda_device = "cuda:" + str(k)
|
85 |
+
self.h[block] = self.h[block].to(cuda_device)
|
86 |
+
# ln_f to last
|
87 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
88 |
+
|
89 |
+
|
90 |
+
def deparallelize(self):
|
91 |
+
warnings.warn(
|
92 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
93 |
+
FutureWarning,
|
94 |
+
)
|
95 |
+
self.model_parallel = False
|
96 |
+
self.device_map = None
|
97 |
+
self.first_device = "cpu"
|
98 |
+
self.last_device = "cpu"
|
99 |
+
self.wte = self.wte.to("cpu")
|
100 |
+
self.wpe = self.wpe.to("cpu")
|
101 |
+
for index in range(len(self.h)):
|
102 |
+
self.h[index] = self.h[index].to("cpu")
|
103 |
+
self.ln_f = self.ln_f.to("cpu")
|
104 |
+
torch.cuda.empty_cache()
|
105 |
+
|
106 |
+
def get_input_embeddings(self):
|
107 |
+
return self.wte
|
108 |
+
|
109 |
+
def set_input_embeddings(self, new_embeddings):
|
110 |
+
self.wte = new_embeddings
|
111 |
+
|
112 |
+
def _prune_heads(self, heads_to_prune):
|
113 |
+
"""
|
114 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
115 |
+
"""
|
116 |
+
for layer, heads in heads_to_prune.items():
|
117 |
+
self.h[layer].attn.prune_heads(heads)
|
118 |
+
|
119 |
+
def forward(
|
120 |
+
self,
|
121 |
+
input_ids: Optional[torch.LongTensor] = None,
|
122 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
123 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
124 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
125 |
+
position_ids: Optional[torch.LongTensor] = None,
|
126 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
127 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
128 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
129 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
130 |
+
use_cache: Optional[bool] = None,
|
131 |
+
output_attentions: Optional[bool] = None,
|
132 |
+
output_hidden_states: Optional[bool] = None,
|
133 |
+
return_dict: Optional[bool] = None,
|
134 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
135 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
136 |
+
output_hidden_states = (
|
137 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
138 |
+
)
|
139 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
140 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
141 |
+
|
142 |
+
if input_ids is not None and inputs_embeds is not None:
|
143 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
144 |
+
elif input_ids is not None:
|
145 |
+
# self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
146 |
+
input_shape = input_ids.size()
|
147 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
148 |
+
batch_size = input_ids.shape[0]
|
149 |
+
elif inputs_embeds is not None:
|
150 |
+
input_shape = inputs_embeds.size()[:-1]
|
151 |
+
batch_size = inputs_embeds.shape[0]
|
152 |
+
else:
|
153 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
154 |
+
|
155 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
156 |
+
|
157 |
+
if token_type_ids is not None:
|
158 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
159 |
+
|
160 |
+
if past_key_values is None:
|
161 |
+
past_length = 0
|
162 |
+
past_key_values = tuple([None] * len(self.h))
|
163 |
+
else:
|
164 |
+
past_length = past_key_values[0][0].size(-2)
|
165 |
+
if position_ids is None:
|
166 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
167 |
+
position_ids = position_ids.unsqueeze(0)
|
168 |
+
|
169 |
+
# GPT2Attention mask.
|
170 |
+
if attention_mask is not None:
|
171 |
+
if batch_size <= 0:
|
172 |
+
raise ValueError("batch_size has to be defined and > 0")
|
173 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
174 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
175 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
176 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
177 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
178 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
179 |
+
attention_mask = attention_mask[:, None, None, :]
|
180 |
+
|
181 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
182 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
183 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
184 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
185 |
+
# effectively the same as removing these entirely.
|
186 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
187 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
188 |
+
|
189 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
190 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
191 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
192 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
193 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
194 |
+
if encoder_attention_mask is None:
|
195 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
196 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
197 |
+
else:
|
198 |
+
encoder_attention_mask = None
|
199 |
+
|
200 |
+
# Prepare head mask if needed
|
201 |
+
# 1.0 in head_mask indicate we keep the head
|
202 |
+
# attention_probs has shape bsz x n_heads x N x N
|
203 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
204 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
205 |
+
|
206 |
+
if inputs_embeds is None:
|
207 |
+
inputs_embeds = self.wte(input_ids)
|
208 |
+
position_embeds = self.wpe(position_ids)
|
209 |
+
hidden_states = inputs_embeds + position_embeds
|
210 |
+
|
211 |
+
if token_type_ids is not None:
|
212 |
+
token_type_embeds = self.wte(token_type_ids)
|
213 |
+
hidden_states = hidden_states + token_type_embeds
|
214 |
+
|
215 |
+
hidden_states = self.drop(hidden_states)
|
216 |
+
|
217 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
218 |
+
|
219 |
+
if self.gradient_checkpointing and self.training:
|
220 |
+
if use_cache:
|
221 |
+
logger.warning_once(
|
222 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
223 |
+
)
|
224 |
+
use_cache = False
|
225 |
+
|
226 |
+
presents = () if use_cache else None
|
227 |
+
all_self_attentions = () if output_attentions else None
|
228 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
229 |
+
all_hidden_states = () if output_hidden_states else None
|
230 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
231 |
+
# Model parallel
|
232 |
+
if self.model_parallel:
|
233 |
+
torch.cuda.set_device(hidden_states.device)
|
234 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
235 |
+
if layer_past is not None:
|
236 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
237 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
238 |
+
if attention_mask is not None:
|
239 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
240 |
+
if isinstance(head_mask, torch.Tensor):
|
241 |
+
head_mask = head_mask.to(hidden_states.device)
|
242 |
+
if output_hidden_states:
|
243 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
244 |
+
|
245 |
+
if self.gradient_checkpointing and self.training:
|
246 |
+
outputs = self._gradient_checkpointing_func(
|
247 |
+
block.__call__,
|
248 |
+
hidden_states,
|
249 |
+
None,
|
250 |
+
attention_mask,
|
251 |
+
head_mask[i],
|
252 |
+
encoder_hidden_states,
|
253 |
+
encoder_attention_mask,
|
254 |
+
use_cache,
|
255 |
+
output_attentions,
|
256 |
+
)
|
257 |
+
else:
|
258 |
+
outputs = block(
|
259 |
+
hidden_states,
|
260 |
+
layer_past=layer_past,
|
261 |
+
attention_mask=attention_mask,
|
262 |
+
head_mask=head_mask[i],
|
263 |
+
encoder_hidden_states=encoder_hidden_states,
|
264 |
+
encoder_attention_mask=encoder_attention_mask,
|
265 |
+
use_cache=use_cache,
|
266 |
+
output_attentions=output_attentions,
|
267 |
+
)
|
268 |
+
|
269 |
+
hidden_states = outputs[0]
|
270 |
+
if use_cache is True:
|
271 |
+
presents = presents + (outputs[1],)
|
272 |
+
|
273 |
+
if output_attentions:
|
274 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
275 |
+
if self.config.add_cross_attention:
|
276 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
277 |
+
|
278 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
279 |
+
if self.model_parallel:
|
280 |
+
for k, v in self.device_map.items():
|
281 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
282 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
283 |
+
|
284 |
+
hidden_states = self.ln_f(hidden_states)
|
285 |
+
|
286 |
+
hidden_states = hidden_states.view(output_shape)
|
287 |
+
# Add last hidden state
|
288 |
+
if output_hidden_states:
|
289 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
290 |
+
|
291 |
+
if not return_dict:
|
292 |
+
return tuple(
|
293 |
+
v
|
294 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
295 |
+
if v is not None
|
296 |
+
)
|
297 |
+
|
298 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
299 |
+
last_hidden_state=hidden_states,
|
300 |
+
past_key_values=presents,
|
301 |
+
hidden_states=all_hidden_states,
|
302 |
+
attentions=all_self_attentions,
|
303 |
+
cross_attentions=all_cross_attentions,
|
304 |
+
)
|
305 |
+
|
306 |
+
class LOLABlock(nn.Module):
|
307 |
+
def __init__(self, config, layer_idx=None):
|
308 |
+
super().__init__()
|
309 |
+
hidden_size = config.hidden_size
|
310 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
311 |
+
|
312 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
313 |
+
self.attn = GPT2Attention(config, layer_idx=layer_idx)
|
314 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
315 |
+
|
316 |
+
self.moe = LOLAMOE(
|
317 |
+
hidden_size,
|
318 |
+
inner_dim,
|
319 |
+
config,
|
320 |
+
config.num_experts,
|
321 |
+
k=config.topk,
|
322 |
+
# capacity_factor=1.0,
|
323 |
+
# min_capacity=4,
|
324 |
+
# drop_tokens=False,
|
325 |
+
# use_tutel=False,
|
326 |
+
# enable_expert_tensor_parallelism=False,
|
327 |
+
)
|
328 |
+
|
329 |
+
def forward(
|
330 |
+
self,
|
331 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
332 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
333 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
334 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
335 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
336 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
337 |
+
use_cache: Optional[bool] = False,
|
338 |
+
output_attentions: Optional[bool] = False,
|
339 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
340 |
+
residual = hidden_states
|
341 |
+
hidden_states = self.ln_1(hidden_states)
|
342 |
+
attn_outputs = self.attn(
|
343 |
+
hidden_states,
|
344 |
+
layer_past=layer_past,
|
345 |
+
attention_mask=attention_mask,
|
346 |
+
head_mask=head_mask,
|
347 |
+
use_cache=use_cache,
|
348 |
+
output_attentions=output_attentions,
|
349 |
+
)
|
350 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
351 |
+
outputs = attn_outputs[1:]
|
352 |
+
# residual connection
|
353 |
+
hidden_states = attn_output + residual
|
354 |
+
|
355 |
+
if encoder_hidden_states is not None:
|
356 |
+
# add one self-attention block for cross-attention
|
357 |
+
if not hasattr(self, "crossattention"):
|
358 |
+
raise ValueError(
|
359 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
360 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
361 |
+
)
|
362 |
+
residual = hidden_states
|
363 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
364 |
+
cross_attn_outputs = self.crossattention(
|
365 |
+
hidden_states,
|
366 |
+
attention_mask=attention_mask,
|
367 |
+
head_mask=head_mask,
|
368 |
+
encoder_hidden_states=encoder_hidden_states,
|
369 |
+
encoder_attention_mask=encoder_attention_mask,
|
370 |
+
output_attentions=output_attentions,
|
371 |
+
)
|
372 |
+
attn_output = cross_attn_outputs[0]
|
373 |
+
# residual connection
|
374 |
+
hidden_states = residual + attn_output
|
375 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
376 |
+
|
377 |
+
residual = hidden_states
|
378 |
+
hidden_states = self.ln_2(hidden_states)
|
379 |
+
feed_forward_hidden_states, _ = self.moe(hidden_states)
|
380 |
+
# residual connection
|
381 |
+
hidden_states = residual + feed_forward_hidden_states
|
382 |
+
|
383 |
+
if use_cache:
|
384 |
+
outputs = (hidden_states,) + outputs
|
385 |
+
else:
|
386 |
+
outputs = (hidden_states,) + outputs[1:]
|
387 |
+
|
388 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
389 |
+
|
390 |
+
class LOLAMOE(nn.Module):
|
391 |
+
def __init__(self,
|
392 |
+
hidden_size,
|
393 |
+
inner_dim,
|
394 |
+
config,
|
395 |
+
num_experts,
|
396 |
+
k
|
397 |
+
):
|
398 |
+
super().__init__()
|
399 |
+
self.hidden_dim = hidden_size
|
400 |
+
self.num_experts = num_experts
|
401 |
+
self.top_k = k
|
402 |
+
|
403 |
+
self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
|
404 |
+
self.experts = nn.ModuleList([GPT2MLP(inner_dim, config) for _ in range(self.num_experts)])
|
405 |
+
|
406 |
+
def forward(self, hidden_states):
|
407 |
+
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/mixtral/modeling_mixtral.py#L816
|
408 |
+
# FIXME do it as in top1gating
|
409 |
+
# https://github.com/microsoft/DeepSpeed/blob/master/deepspeed/moe/sharded_moe.py
|
410 |
+
|
411 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
412 |
+
hidden_states = hidden_states.view(-1, hidden_dim)
|
413 |
+
|
414 |
+
router_logits = self.gate(hidden_states)
|
415 |
+
# router_logits = router_logits.squeeze(dim=0)
|
416 |
+
|
417 |
+
# TODO: fix the weights logic to be the same as Megatron
|
418 |
+
routing_weights = F.softmax(router_logits, dim=1)
|
419 |
+
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
420 |
+
# routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
421 |
+
# commenting the statement above for LOLA and removing the "/" operator to avoid getting weights as 1
|
422 |
+
routing_weights = routing_weights.sum(dim=-1, keepdim=True)
|
423 |
+
routing_weights = routing_weights.to(hidden_states.dtype)
|
424 |
+
|
425 |
+
final_hidden_states = torch.zeros(
|
426 |
+
(batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
|
427 |
+
)
|
428 |
+
expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
|
429 |
+
for expert_idx in range(self.num_experts):
|
430 |
+
expert_layer = self.experts[expert_idx]
|
431 |
+
idx, top_x = torch.where(expert_mask[expert_idx])
|
432 |
+
|
433 |
+
if top_x.shape[0] == 0:
|
434 |
+
continue
|
435 |
+
|
436 |
+
# in torch it is faster to index using lists than torch tensors
|
437 |
+
top_x_list = top_x.tolist()
|
438 |
+
idx_list = idx.tolist()
|
439 |
+
|
440 |
+
# Index the correct hidden states and compute the expert hidden state for
|
441 |
+
# the current expert. We need to make sure to multiply the output hidden
|
442 |
+
# states by `routing_weights` on the corresponding tokens (top-1 and top-2)
|
443 |
+
current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
|
444 |
+
current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
|
445 |
+
|
446 |
+
# However `index_add_` only support torch tensors for indexing so we'll use
|
447 |
+
# the `top_x` tensor here.
|
448 |
+
final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
|
449 |
+
final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
|
450 |
+
return final_hidden_states, router_logits
|
451 |
+
|
452 |
+
class LOLAAttention(GPT2Attention):
|
453 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
454 |
+
super(GPT2Attention, SequenceClassifierOutputWithPast).__init__()
|
455 |
+
|
456 |
+
max_positions = config.max_position_embeddings
|
457 |
+
self.register_buffer(
|
458 |
+
"bias",
|
459 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
460 |
+
1, 1, max_positions, max_positions
|
461 |
+
),
|
462 |
+
#persistent=False,
|
463 |
+
)
|
464 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4),
|
465 |
+
#persistent=False
|
466 |
+
)
|
467 |
+
|
468 |
+
self.embed_dim = config.hidden_size
|
469 |
+
self.num_heads = config.num_attention_heads
|
470 |
+
self.head_dim = self.embed_dim // self.num_heads
|
471 |
+
self.split_size = self.embed_dim
|
472 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
473 |
+
raise ValueError(
|
474 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
475 |
+
f" {self.num_heads})."
|
476 |
+
)
|
477 |
+
|
478 |
+
self.scale_attn_weights = config.scale_attn_weights
|
479 |
+
self.is_cross_attention = is_cross_attention
|
480 |
+
|
481 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
482 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
483 |
+
self.layer_idx = layer_idx
|
484 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
485 |
+
|
486 |
+
if self.is_cross_attention:
|
487 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
488 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
489 |
+
else:
|
490 |
+
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
491 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
492 |
+
|
493 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
494 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
495 |
+
|
496 |
+
self.pruned_heads = set()
|
497 |
+
|
498 |
+
|
499 |
+
class LOLALMHeadModel(GPT2LMHeadModel):
|
500 |
+
|
501 |
+
config_class = LOLAConfig
|
502 |
+
|
503 |
+
def __init__(self, config):
|
504 |
+
# preventing initiation of GPT2LMHeadModel directly
|
505 |
+
super(GPT2LMHeadModel, self).__init__(config)
|
506 |
+
self.transformer = LOLAModel(config)
|
507 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
508 |
+
|
509 |
+
# Model parallel
|
510 |
+
self.model_parallel = False
|
511 |
+
self.device_map = None
|
512 |
+
|
513 |
+
# Initialize weights and apply final processing
|
514 |
+
self.post_init()
|
515 |
+
|
516 |
+
|
517 |
+
class LOLADoubleHeadsModel(GPT2DoubleHeadsModel):
|
518 |
+
|
519 |
+
config_class = LOLAConfig
|
520 |
+
|
521 |
+
def __init__(self, config):
|
522 |
+
super(GPT2DoubleHeadsModel, self).__init__(config)
|
523 |
+
config.num_labels = 1
|
524 |
+
self.transformer = LOLAModel(config)
|
525 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
526 |
+
self.multiple_choice_head = SequenceSummary(config)
|
527 |
+
|
528 |
+
# Model parallel
|
529 |
+
self.model_parallel = False
|
530 |
+
self.device_map = None
|
531 |
+
|
532 |
+
# Initialize weights and apply final processing
|
533 |
+
self.post_init()
|
534 |
+
|
535 |
+
|
536 |
+
class LOLAForSequenceClassification(GPT2ForSequenceClassification):
|
537 |
+
|
538 |
+
config_class = LOLAConfig
|
539 |
+
|
540 |
+
def __init__(self, config):
|
541 |
+
super(GPT2ForSequenceClassification, self).__init__(config)
|
542 |
+
self.num_labels = config.num_labels
|
543 |
+
self.transformer = LOLAModel(config)
|
544 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
545 |
+
|
546 |
+
# Model parallel
|
547 |
+
self.model_parallel = False
|
548 |
+
self.device_map = None
|
549 |
+
|
550 |
+
# Initialize weights and apply final processing
|
551 |
+
self.post_init()
|
552 |
+
|
553 |
+
class LOLAForTokenClassification(GPT2ForTokenClassification):
|
554 |
+
|
555 |
+
config_class = LOLAConfig
|
556 |
+
|
557 |
+
def __init__(self, config):
|
558 |
+
super(GPT2ForTokenClassification, self).__init__(config)
|
559 |
+
self.num_labels = config.num_labels
|
560 |
+
|
561 |
+
self.transformer = LOLAModel(config)
|
562 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
563 |
+
classifier_dropout = config.classifier_dropout
|
564 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
565 |
+
classifier_dropout = config.hidden_dropout
|
566 |
+
else:
|
567 |
+
classifier_dropout = 0.1
|
568 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
569 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
570 |
+
|
571 |
+
# Model parallel
|
572 |
+
self.model_parallel = False
|
573 |
+
self.device_map = None
|
574 |
+
|
575 |
+
# Initialize weights and apply final processing
|
576 |
+
self.post_init()
|
577 |
+
|
578 |
+
class LOLAForQuestionAnswering(GPT2PreTrainedModel):
|
579 |
+
|
580 |
+
config_class = LOLAConfig
|
581 |
+
|
582 |
+
def __init__(self, config):
|
583 |
+
super().__init__(config)
|
584 |
+
self.num_labels = config.num_labels
|
585 |
+
self.transformer = LOLAModel(config)
|
586 |
+
self.qa_outputs = nn.Linear(config.hidden_size, 2)
|
587 |
+
|
588 |
+
# Model parallel
|
589 |
+
self.model_parallel = False
|
590 |
+
self.device_map = None
|
591 |
+
|
592 |
+
# Initialize weights and apply final processing
|
593 |
+
self.post_init()
|
594 |
+
|
595 |
+
def forward(
|
596 |
+
self,
|
597 |
+
input_ids: Optional[torch.LongTensor] = None,
|
598 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
599 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
600 |
+
position_ids: Optional[torch.LongTensor] = None,
|
601 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
602 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
603 |
+
start_positions: Optional[torch.LongTensor] = None,
|
604 |
+
end_positions: Optional[torch.LongTensor] = None,
|
605 |
+
output_attentions: Optional[bool] = None,
|
606 |
+
output_hidden_states: Optional[bool] = None,
|
607 |
+
return_dict: Optional[bool] = None,
|
608 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
609 |
+
r"""
|
610 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
611 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
612 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
613 |
+
are not taken into account for computing the loss.
|
614 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
615 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
616 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
617 |
+
are not taken into account for computing the loss.
|
618 |
+
"""
|
619 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
620 |
+
|
621 |
+
outputs = self.transformer(
|
622 |
+
input_ids,
|
623 |
+
attention_mask=attention_mask,
|
624 |
+
token_type_ids=token_type_ids,
|
625 |
+
position_ids=position_ids,
|
626 |
+
head_mask=head_mask,
|
627 |
+
inputs_embeds=inputs_embeds,
|
628 |
+
output_attentions=output_attentions,
|
629 |
+
output_hidden_states=output_hidden_states,
|
630 |
+
return_dict=return_dict,
|
631 |
+
)
|
632 |
+
|
633 |
+
sequence_output = outputs[0]
|
634 |
+
|
635 |
+
logits = self.qa_outputs(sequence_output)
|
636 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
637 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
638 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
639 |
+
|
640 |
+
total_loss = None
|
641 |
+
if start_positions is not None and end_positions is not None:
|
642 |
+
# If we are on multi-GPU, split add a dimension
|
643 |
+
if len(start_positions.size()) > 1:
|
644 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
645 |
+
if len(end_positions.size()) > 1:
|
646 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
647 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
648 |
+
ignored_index = start_logits.size(1)
|
649 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
650 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
651 |
+
|
652 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
653 |
+
start_loss = loss_fct(start_logits, start_positions)
|
654 |
+
end_loss = loss_fct(end_logits, end_positions)
|
655 |
+
total_loss = (start_loss + end_loss) / 2
|
656 |
+
|
657 |
+
if not return_dict:
|
658 |
+
output = (start_logits, end_logits) + outputs[2:]
|
659 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
660 |
+
|
661 |
+
return QuestionAnsweringModelOutput(
|
662 |
+
loss=total_loss,
|
663 |
+
start_logits=start_logits,
|
664 |
+
end_logits=end_logits,
|
665 |
+
hidden_states=outputs.hidden_states,
|
666 |
+
attentions=outputs.attentions,
|
667 |
+
)
|