|
from transformers.utils import ModelOutput |
|
import torch |
|
from torch import nn |
|
from typing import Dict, List, Tuple, Optional |
|
from dataclasses import dataclass |
|
from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast |
|
|
|
|
|
POSSIBLE_PREFIX_CLASSES = [ ['ืืืฉ', 'ืืฉ', 'ืืฉ', 'ืืฉ', 'ืืฉ'], ['ื'], ['ืฉ'], ['ื'], ['ื'], ['ื'], ['ื'], ['ื'] ] |
|
|
|
PREFIXES_TO_CLASS = {w:i for i,l in enumerate(POSSIBLE_PREFIX_CLASSES) for w in l} |
|
|
|
|
|
ALL_PREFIX_ITEMS = list(sorted(PREFIXES_TO_CLASS.keys(), key=len, reverse=True)) |
|
TOTAL_POSSIBLE_PREFIX_CLASSES = len(POSSIBLE_PREFIX_CLASSES) |
|
|
|
def get_prefixes_from_str(s, greedy=False): |
|
|
|
while len(s) > 0 and s[0] in PREFIXES_TO_CLASS: |
|
|
|
next_pre = next((pre for pre in ALL_PREFIX_ITEMS if s.startswith(pre)), None) |
|
if next_pre is None: |
|
return |
|
yield next_pre |
|
|
|
|
|
|
|
|
|
if not greedy and len(next_pre) > 1: |
|
yield next_pre[0] |
|
s = s[len(next_pre):] |
|
|
|
def get_prefix_classes_from_str(s, greedy=False): |
|
for pre in get_prefixes_from_str(s, greedy): |
|
yield PREFIXES_TO_CLASS[pre] |
|
|
|
@dataclass |
|
class PrefixesClassifiersOutput(ModelOutput): |
|
loss: Optional[torch.FloatTensor] = None |
|
logits: Optional[torch.FloatTensor] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
class BertPrefixMarkingHead(nn.Module): |
|
def __init__(self, config) -> None: |
|
super().__init__() |
|
self.config = config |
|
|
|
|
|
|
|
|
|
prefix_class_embed = config.hidden_size // TOTAL_POSSIBLE_PREFIX_CLASSES |
|
self.prefix_class_embeddings = nn.Embedding(TOTAL_POSSIBLE_PREFIX_CLASSES + 1, prefix_class_embed) |
|
|
|
|
|
self.transform = nn.Linear(config.hidden_size + prefix_class_embed * TOTAL_POSSIBLE_PREFIX_CLASSES, config.hidden_size) |
|
self.activation = nn.Tanh() |
|
self.classifiers = nn.ModuleList([nn.Linear(config.hidden_size, 2) for _ in range(TOTAL_POSSIBLE_PREFIX_CLASSES)]) |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.Tensor, |
|
prefix_class_id_options: torch.Tensor, |
|
labels: Optional[torch.Tensor] = None) -> Tuple[torch.FloatTensor, torch.FloatTensor]: |
|
|
|
|
|
|
|
|
|
|
|
|
|
possible_class_embed = self.prefix_class_embeddings(prefix_class_id_options) |
|
|
|
possible_class_embed = possible_class_embed.reshape(possible_class_embed.shape[:-2] + (-1,)) |
|
|
|
|
|
pre_transform_output = torch.cat((hidden_states, possible_class_embed), dim=-1) |
|
pre_logits_output = self.activation(self.transform(pre_transform_output)) |
|
|
|
|
|
logits = torch.cat([cls(pre_logits_output).unsqueeze(-2) for cls in self.classifiers], dim=-2) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, 2), labels.view(-1)) |
|
|
|
return (loss, logits) |
|
|
|
|
|
|
|
class BertForPrefixMarking(BertPreTrainedModel): |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.bert = BertModel(config, add_pooling_layer=False) |
|
self.dropout = nn.Dropout(config.hidden_dropout_prob) |
|
self.prefix = BertPrefixMarkingHead(config) |
|
|
|
|
|
self.post_init() |
|
|
|
def forward( |
|
self, |
|
input_ids: Optional[torch.Tensor] = None, |
|
attention_mask: Optional[torch.Tensor] = None, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
prefix_class_id_options: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
labels: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
): |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
bert_outputs = self.bert( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = bert_outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
|
|
loss, logits = self.prefix.forward(hidden_states, prefix_class_id_options, labels) |
|
if not return_dict: |
|
return (loss,logits,) + bert_outputs[2:] |
|
|
|
return PrefixesClassifiersOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=bert_outputs.hidden_states, |
|
attentions=bert_outputs.attentions, |
|
) |
|
|
|
def predict(self, sentences: List[str], tokenizer: BertTokenizerFast, padding='longest'): |
|
|
|
inputs = encode_sentences_for_bert_for_prefix_marking(tokenizer, sentences, padding) |
|
inputs = {k:v.to(self.device) for k,v in inputs.items()} |
|
|
|
|
|
logits = self.forward(**inputs, return_dict=True).logits |
|
return parse_logits(inputs, sentences, tokenizer, logits) |
|
|
|
def parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenizer: BertTokenizerFast, logits: torch.FloatTensor): |
|
|
|
logit_preds = torch.argmax(logits, axis=3) |
|
|
|
ret = [] |
|
|
|
for sent_idx,sent_ids in enumerate(inputs['input_ids']): |
|
tokens = tokenizer.convert_ids_to_tokens(sent_ids) |
|
ret.append([]) |
|
for tok_idx,token in enumerate(tokens): |
|
|
|
if token == tokenizer.pad_token: continue |
|
if token.startswith('##'): continue |
|
|
|
|
|
next_tok_idx = tok_idx + 1 |
|
while next_tok_idx < len(tokens) and tokens[next_tok_idx].startswith('##'): |
|
token += tokens[next_tok_idx][2:] |
|
next_tok_idx += 1 |
|
|
|
prefix_len = get_predicted_prefix_len_from_logits(token, logit_preds[sent_idx, tok_idx]) |
|
|
|
if not prefix_len: |
|
ret[-1].append([token]) |
|
else: |
|
ret[-1].append([token[:prefix_len], token[prefix_len:]]) |
|
return ret |
|
|
|
def encode_sentences_for_bert_for_prefix_marking(tokenizer: BertTokenizerFast, sentences: List[str], padding='longest', truncation=True): |
|
inputs = tokenizer(sentences, padding=padding, truncation=truncation, return_offsets_mapping=True, return_tensors='pt') |
|
|
|
|
|
prefix_id_options = torch.full(inputs['input_ids'].shape + (TOTAL_POSSIBLE_PREFIX_CLASSES,), TOTAL_POSSIBLE_PREFIX_CLASSES, dtype=torch.long) |
|
|
|
|
|
for sent_idx, sent_ids in enumerate(inputs['input_ids']): |
|
tokens = tokenizer.convert_ids_to_tokens(sent_ids) |
|
for tok_idx, token in enumerate(tokens): |
|
|
|
if len(token) < 2 or not token[0] in PREFIXES_TO_CLASS: continue |
|
|
|
|
|
next_tok_idx = tok_idx + 1 |
|
while next_tok_idx < len(tokens) and tokens[next_tok_idx].startswith('##'): |
|
token += tokens[next_tok_idx][2:] |
|
next_tok_idx += 1 |
|
|
|
|
|
for pre_class in get_prefix_classes_from_str(token): |
|
prefix_id_options[sent_idx, tok_idx, pre_class] = pre_class |
|
|
|
inputs['prefix_class_id_options'] = prefix_id_options |
|
return inputs |
|
|
|
def get_predicted_prefix_len_from_logits(token, token_logits): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cur_len, skip_next, last_check, seen_prefixes = 0, False, False, set() |
|
for prefix in get_prefixes_from_str(token): |
|
|
|
if skip_next: |
|
skip_next = False |
|
continue |
|
|
|
|
|
if prefix in seen_prefixes: break |
|
seen_prefixes.add(prefix) |
|
|
|
|
|
if token_logits[PREFIXES_TO_CLASS[prefix]].item(): |
|
cur_len += len(prefix) |
|
if last_check: break |
|
skip_next = len(prefix) > 1 |
|
|
|
|
|
|
|
|
|
elif len(prefix) > 1: |
|
last_check = True |
|
else: |
|
break |
|
|
|
return cur_len |
|
|