File size: 13,777 Bytes
6689dc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
import math
from transformers.utils import ModelOutput
import torch
from torch import nn
from typing import Dict, List, Tuple, Optional, Union
from dataclasses import dataclass
from transformers import BertPreTrainedModel, BertModel, BertTokenizerFast
ALL_FUNCTION_LABELS = ["nsubj", "punct", "mark", "case", "fixed", "obl", "det", "amod", "acl:relcl", "nmod", "cc", "conj", "root", "compound", "cop", "compound:affix", "advmod", "nummod", "appos", "nsubj:pass", "nmod:poss", "xcomp", "obj", "aux", "parataxis", "advcl", "ccomp", "csubj", "acl", "obl:tmod", "csubj:pass", "dep", "dislocated", "nmod:tmod", "nmod:npmod", "flat", "obl:npmod", "goeswith", "reparandum", "orphan", "list", "discourse", "iobj", "vocative", "expl", "flat:name"]
@dataclass
class SyntaxLogitsOutput(ModelOutput):
dependency_logits: torch.FloatTensor = None
function_logits: torch.FloatTensor = None
dependency_head_indices: torch.LongTensor = None
def detach(self):
return SyntaxTaggingOutput(self.dependency_logits.detach(), self.function_logits.detach(), self.dependency_head_indices.detach())
@dataclass
class SyntaxTaggingOutput(ModelOutput):
loss: Optional[torch.FloatTensor] = None
logits: Optional[SyntaxLogitsOutput] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
class SyntaxLabels(ModelOutput):
dependency_labels: Optional[torch.LongTensor] = None
function_labels: Optional[torch.LongTensor] = None
def detach(self):
return SyntaxLabels(self.dependency_labels.detach(), self.function_labels.detach())
def to(self, device):
return SyntaxLabels(self.dependency_labels.to(device), self.function_labels.to(device))
class BertSyntaxParsingHead(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
# the attention query & key values
self.head_size = config.syntax_head_size# int(config.hidden_size / config.num_attention_heads * 2)
self.query = nn.Linear(config.hidden_size, self.head_size)
self.key = nn.Linear(config.hidden_size, self.head_size)
# the function classifier gets two encoding values and predicts the labels
self.num_function_classes = len(ALL_FUNCTION_LABELS)
self.cls = nn.Linear(config.hidden_size * 2, self.num_function_classes)
def forward(
self,
hidden_states: torch.Tensor,
extended_attention_mask: Optional[torch.Tensor],
labels: Optional[SyntaxLabels] = None,
compute_mst: bool = False) -> Tuple[torch.Tensor, SyntaxLogitsOutput]:
# Take the dot product between "query" and "key" to get the raw attention scores.
query_layer = self.query(hidden_states)
key_layer = self.key(hidden_states)
attention_scores = torch.bmm(query_layer, key_layer.transpose(-1, -2)) / math.sqrt(self.head_size)
# add in the attention mask
if extended_attention_mask is not None:
if extended_attention_mask.ndim == 4:
extended_attention_mask = extended_attention_mask.squeeze(1)
attention_scores += extended_attention_mask# batch x seq x seq
# At this point take the hidden_state of the word and of the dependency word, and predict the function
# If labels are provided, use the labels.
if self.training and labels is not None:
# Note that the labels can have -100, so just set those to zero with a max
dep_indices = labels.dependency_labels.clamp_min(0)
# Otherwise - check if he wants the MST or just the argmax
elif compute_mst:
dep_indices = compute_mst_tree(attention_scores)
else:
dep_indices = torch.argmax(attention_scores, dim=-1)
# After we retrieved the dependency indicies, create a tensor of teh batch indices, and and retrieve the vectors of the heads to calculate the function
batch_indices = torch.arange(dep_indices.size(0)).view(-1, 1).expand(-1, dep_indices.size(1)).to(dep_indices.device)
dep_vectors = hidden_states[batch_indices, dep_indices, :] # batch x seq x dim
# concatenate that with the last hidden states, and send to the classifier output
cls_inputs = torch.cat((hidden_states, dep_vectors), dim=-1)
function_logits = self.cls(cls_inputs)
loss = None
if labels is not None:
loss_fct = nn.CrossEntropyLoss()
# step 1: dependency scores loss - this is applied to the attention scores
loss = loss_fct(attention_scores.view(-1, hidden_states.size(-2)), labels.dependency_labels.view(-1))
# step 2: function loss
loss += loss_fct(function_logits.view(-1, self.num_function_classes), labels.function_labels.view(-1))
return (loss, SyntaxLogitsOutput(attention_scores, function_logits, dep_indices))
class BertForSyntaxParsing(BertPreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.bert = BertModel(config, add_pooling_layer=False)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
self.syntax = BertSyntaxParsingHead(config)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
token_type_ids: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
labels: Optional[SyntaxLabels] = None,
head_mask: Optional[torch.Tensor] = None,
inputs_embeds: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
compute_syntax_mst: Optional[bool] = None,
):
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
bert_outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
extended_attention_mask = None
if attention_mask is not None:
extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_ids.size())
# apply the syntax head
loss, logits = self.syntax(self.dropout(bert_outputs[0]), extended_attention_mask, labels, compute_syntax_mst)
if not return_dict:
return (loss,(logits.dependency_logits, logits.function_logits)) + bert_outputs[2:]
return SyntaxTaggingOutput(
loss=loss,
logits=logits,
hidden_states=bert_outputs.hidden_states,
attentions=bert_outputs.attentions,
)
def predict(self, sentences: Union[str, List[str]], tokenizer: BertTokenizerFast, compute_mst=True):
if isinstance(sentences, str):
sentences = [sentences]
# predict the logits for the sentence
inputs = tokenizer(sentences, padding='longest', truncation=True, return_tensors='pt')
inputs = {k:v.to(self.device) for k,v in inputs.items()}
logits = self.forward(**inputs, return_dict=True, compute_syntax_mst=compute_mst).logits
return parse_logits(inputs, sentences, tokenizer, logits)
def parse_logits(inputs: Dict[str, torch.Tensor], sentences: List[str], tokenizer: BertTokenizerFast, logits: SyntaxLogitsOutput):
outputs = []
for i in range(len(sentences)):
deps = logits.dependency_head_indices[i].tolist()
funcs = logits.function_logits.argmax(-1)[i].tolist()
toks = tokenizer.convert_ids_to_tokens(inputs['input_ids'][i])[1:-1] # ignore cls and sep
# first, go through the tokens and create a mapping between each dependency index and the index without wordpieces
# wordpieces. At the same time, append the wordpieces in
idx_mapping = {-1:-1} # default root
real_idx = -1
for i in range(len(toks)):
if not toks[i].startswith('##'):
real_idx += 1
idx_mapping[i] = real_idx
# build our tree, keeping tracking of the root idx
tree = []
root_idx = 0
for i in range(len(toks)):
if toks[i].startswith('##'):
tree[-1]['word'] += toks[i][2:]
continue
dep_idx = deps[i + 1] - 1 # increase 1 for cls, decrease 1 for cls
dep_head = 'root' if dep_idx == -1 else toks[dep_idx]
dep_func = ALL_FUNCTION_LABELS[funcs[i + 1]]
if dep_head == 'root': root_idx = len(tree)
tree.append(dict(word=toks[i], dep_head_idx=idx_mapping[dep_idx], dep_func=dep_func))
# append the head word
for d in tree:
d['dep_head'] = tree[d['dep_head_idx']]['word']
outputs.append(dict(tree=tree, root_idx=root_idx))
return outputs
def compute_mst_tree(attention_scores: torch.Tensor):
# attention scores should be 3 dimensions - batch x seq x seq (if it is 2 - just unsqueeze)
if attention_scores.ndim == 2: attention_scores = attention_scores.unsqueeze(0)
if attention_scores.ndim != 3 or attention_scores.shape[1] != attention_scores.shape[2]:
raise ValueError(f'Expected attention scores to be of shape batch x seq x seq, instead got {attention_scores.shape}')
batch_size, seq_len, _ = attention_scores.shape
# start by softmaxing so the scores are comparable
attention_scores = attention_scores.softmax(dim=-1)
# set the values for the CLS and sep to all by very low, so they never get chosen as a replacement arc
attention_scores[:, 0, :] = -10000
attention_scores[:, -1, :] = -10000
attention_scores[:, :, -1] = -10000 # can never predict sep
# find the root, and make him super high so we never have a conflict
root_cands = torch.argsort(attention_scores[:, :, 0], dim=-1)
batch_indices = torch.arange(batch_size, device=root_cands.device)
attention_scores[batch_indices.unsqueeze(1), root_cands, 0] = -10000
attention_scores[batch_indices, root_cands[:, -1], 0] = 10000
# we start by getting the argmax for each score, and then computing the cycles and contracting them
sorted_indices = torch.argsort(attention_scores, dim=-1, descending=True)
indices = sorted_indices[:, :, 0].clone() # take the argmax
# go through each batch item and make sure our tree works
for batch_idx in range(batch_size):
# We have one root - detect the cycles and contract them. A cycle can never contain the root so really
# for every cycle, we look at all the nodes, and find the highest arc out of the cycle for any values. Replace that and tada
has_cycle, cycle_nodes = detect_cycle(indices[batch_idx])
while has_cycle:
base_idx, head_idx = choose_contracting_arc(indices[batch_idx], sorted_indices[batch_idx], cycle_nodes, attention_scores[batch_idx])
indices[batch_idx, base_idx] = head_idx
# find the next cycle
has_cycle, cycle_nodes = detect_cycle(indices[batch_idx])
return indices
def detect_cycle(indices: torch.LongTensor):
# Simple cycle detection algorithm
# Returns a boolean indicating if a cycle is detected and the nodes involved in the cycle
visited = set()
for node in range(1, len(indices) - 1): # ignore the CLS/SEP tokens
if node in visited:
continue
current_path = set()
while node not in visited:
visited.add(node)
current_path.add(node)
node = indices[node].item()
if node == 0: break # roots never point to anything
if node in current_path:
return True, current_path # Cycle detected
return False, None
def choose_contracting_arc(indices: torch.LongTensor, sorted_indices: torch.LongTensor, cycle_nodes: set, scores: torch.FloatTensor):
# Chooses the highest-scoring, non-cycling arc from a graph. Iterates through 'cycle_nodes' to find
# the best arc based on 'scores', avoiding cycles and zero node connections.
# For each node, we only look at the next highest scoring non-cycling arc
best_base_idx, best_head_idx = -1, -1
score = float('-inf')
# convert the indices to a list once, to avoid multiple conversions (saves a few seconds)
currents = indices.tolist()
for base_node in cycle_nodes:
# we don't want to take anything that has a higher score than the current value - we can end up in an endless loop
# Since the indices are sorted, as soon as we find our current item, we can move on to the next.
current = currents[base_node]
found_current = False
for head_node in sorted_indices[base_node].tolist():
if head_node == current:
found_current = True
continue
if not found_current or head_node in cycle_nodes or head_node == 0:
continue
current_score = scores[base_node, head_node].item()
if current_score > score:
best_base_idx, best_head_idx, score = base_node, head_node, current_score
break
return best_base_idx, best_head_idx |