|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" PyTorch MegatronGPT model.""" |
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.utils.checkpoint |
|
from torch import nn |
|
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss |
|
|
|
from transformers.activations import ACT2FN |
|
from transformers.file_utils import ( |
|
add_start_docstrings, |
|
add_start_docstrings_to_model_forward, |
|
replace_return_docstrings, |
|
) |
|
from transformers.modeling_outputs import ( |
|
BaseModelOutputWithPast, |
|
CausalLMOutputWithPast, |
|
QuestionAnsweringModelOutput, |
|
SequenceClassifierOutputWithPast, |
|
TokenClassifierOutput, |
|
) |
|
from transformers.modeling_utils import PreTrainedModel |
|
from transformers.utils import logging |
|
from .configuration_megatron_gpt import MegatronGPTConfig |
|
|
|
def get_activation(act): |
|
if act in ["gelu", "geglu", "fast-geglu"]: |
|
act = 'gelu' |
|
elif act in ["reglu", "fast-reglu"]: |
|
act = 'relu' |
|
elif act in ["swiglu", "fast-swiglu"]: |
|
act = 'silu' |
|
return ACT2FN[act] |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
_CONFIG_FOR_DOC = "MegatronGPTConfig" |
|
|
|
@dataclass |
|
class CausalLMOutputWithPastAndEncoding(CausalLMOutputWithPast): |
|
encoding_states: Optional[torch.FloatTensor] = None |
|
|
|
class MegatronGPTPreTrainedModel(PreTrainedModel): |
|
""" |
|
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained |
|
models. |
|
""" |
|
|
|
config_class = MegatronGPTConfig |
|
base_model_prefix = "megatron_gpt" |
|
supports_gradient_checkpointing = True |
|
_no_split_modules = ["MegatronGPTLayer"] |
|
_skip_keys_device_placement = "past_key_values" |
|
|
|
def _init_weights(self, module): |
|
"""Initialize the weights""" |
|
if isinstance(module, nn.Linear): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.bias is not None: |
|
module.bias.data.zero_() |
|
elif isinstance(module, nn.Embedding): |
|
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) |
|
if module.padding_idx is not None: |
|
module.weight.data[module.padding_idx].zero_() |
|
elif isinstance(module, nn.LayerNorm): |
|
module.bias.data.zero_() |
|
module.weight.data.fill_(1.0) |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, MegatronGPTModel): |
|
module.gradient_checkpointing = value |
|
|
|
|
|
class MegatronGPTAttention(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
self.self_attention_relative_position_bias = config.self_attention_relative_position_bias |
|
self.num_attention_heads = config.num_attention_heads |
|
self.hidden_size = config.hidden_size |
|
if self.hidden_size % self.num_attention_heads != 0: |
|
raise ValueError( |
|
"The hidden size is not divisble by the number of attention heads! Make sure to update them" |
|
) |
|
self.head_size = self.hidden_size // self.num_attention_heads |
|
self.rotary_ndims = int(self.head_size * config.rotary_pct) |
|
self._init_bias(config.max_position_embeddings) |
|
|
|
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False) |
|
self._init_rope() |
|
|
|
self.register_buffer( |
|
"norm_factor", |
|
torch.sqrt(torch.tensor(self.head_size if config.normalize_attention_scores else 1.0, dtype=torch.float32)).to(torch.get_default_dtype()), |
|
persistent=False, |
|
) |
|
self.query_key_value = nn.Linear(config.hidden_size, 3 * config.hidden_size, bias=config.bias) |
|
self.dense = nn.Linear(config.hidden_size, config.hidden_size, bias=config.bias) |
|
self.attention_dropout = nn.Dropout(config.attention_dropout) |
|
|
|
def _init_bias(self, max_positions, device=None): |
|
self.register_buffer( |
|
"bias", |
|
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view( |
|
1, 1, max_positions, max_positions |
|
), |
|
persistent=False, |
|
) |
|
if device is not None: |
|
self.bias = self.bias.to(device) |
|
|
|
def _init_rope(self): |
|
if self.config.rope_scaling is None: |
|
self.rotary_emb = MegatronGPTRotaryEmbedding( |
|
self.rotary_ndims, self.config.max_position_embeddings, base=self.config.rotary_emb_base |
|
) |
|
else: |
|
scaling_type = self.config.rope_scaling["type"] |
|
scaling_factor = self.config.rope_scaling["factor"] |
|
if scaling_type == "linear": |
|
self.rotary_emb = MegatronGPTLinearScalingRotaryEmbedding( |
|
self.rotary_ndims, |
|
self.config.max_position_embeddings, |
|
base=self.config.rotary_emb_base, |
|
scaling_factor=scaling_factor, |
|
) |
|
elif scaling_type == "dynamic": |
|
self.rotary_emb = MegatronGPTDynamicNTKScalingRotaryEmbedding( |
|
self.rotary_ndims, |
|
self.config.max_position_embeddings, |
|
base=self.config.rotary_emb_base, |
|
scaling_factor=scaling_factor, |
|
) |
|
else: |
|
raise ValueError(f"Unknown RoPE scaling type {scaling_type}") |
|
|
|
def forward( |
|
self, |
|
hidden_states: torch.FloatTensor, |
|
attention_mask: torch.FloatTensor, |
|
position_ids: torch.LongTensor, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
use_cache: Optional[bool] = False, |
|
output_attentions: Optional[bool] = False, |
|
): |
|
has_layer_past = layer_past is not None |
|
|
|
|
|
|
|
|
|
qkv = self.query_key_value(hidden_states) |
|
|
|
|
|
|
|
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size) |
|
qkv = qkv.view(*new_qkv_shape) |
|
|
|
|
|
query = qkv[..., : self.head_size].permute(0, 2, 1, 3) |
|
key = qkv[..., self.head_size : 2 * self.head_size].permute(0, 2, 1, 3) |
|
value = qkv[..., 2 * self.head_size :].permute(0, 2, 1, 3) |
|
|
|
|
|
query_rot = query[..., : self.rotary_ndims] |
|
query_pass = query[..., self.rotary_ndims :] |
|
key_rot = key[..., : self.rotary_ndims] |
|
key_pass = key[..., self.rotary_ndims :] |
|
|
|
|
|
seq_len = key.shape[-2] |
|
if has_layer_past: |
|
seq_len = seq_len + layer_past[0].shape[-2] |
|
cos, sin = self.rotary_emb(value, seq_len=seq_len) |
|
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids) |
|
query = torch.cat((query, query_pass), dim=-1) |
|
key = torch.cat((key, key_pass), dim=-1) |
|
|
|
|
|
if has_layer_past: |
|
past_key = layer_past[0] |
|
past_value = layer_past[1] |
|
key = torch.cat((past_key, key), dim=-2) |
|
value = torch.cat((past_value, value), dim=-2) |
|
present = (key, value) if use_cache else None |
|
|
|
|
|
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask) |
|
|
|
|
|
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size) |
|
attn_output = self.dense(attn_output) |
|
|
|
outputs = (attn_output, present) |
|
if output_attentions: |
|
outputs += (attn_weights,) |
|
|
|
return outputs |
|
|
|
@classmethod |
|
def _split_heads(cls, tensor, num_attention_heads, attn_head_size): |
|
""" |
|
Splits hidden dim into attn_head_size and num_attention_heads |
|
""" |
|
|
|
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size) |
|
|
|
tensor = tensor.view(new_shape) |
|
|
|
tensor = tensor.permute(0, 2, 1, 3) |
|
return tensor |
|
|
|
@classmethod |
|
def _merge_heads(cls, tensor, num_attention_heads, attn_head_size): |
|
""" |
|
Merges attn_head_size dim and num_attn_heads dim into hidden dim |
|
""" |
|
|
|
tensor = tensor.permute(0, 2, 1, 3).contiguous() |
|
|
|
tensor = tensor.view(tensor.size(0), tensor.size(1), num_attention_heads * attn_head_size) |
|
|
|
return tensor |
|
|
|
def _attn(self, query, key, value, attention_mask=None, head_mask=None): |
|
|
|
|
|
batch_size, num_attention_heads, query_length, attn_head_size = query.size() |
|
key_length = key.size(-2) |
|
|
|
|
|
if key_length > self.bias.shape[-1]: |
|
self._init_bias(key_length, device=key.device) |
|
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length] |
|
|
|
query = query.view(batch_size * num_attention_heads, query_length, attn_head_size) |
|
key = key.view(batch_size * num_attention_heads, key_length, attn_head_size) |
|
attn_scores = torch.zeros( |
|
batch_size * num_attention_heads, |
|
query_length, |
|
key_length, |
|
dtype=query.dtype, |
|
device=key.device, |
|
) |
|
attn_scores = torch.baddbmm( |
|
attn_scores, |
|
query, |
|
key.transpose(1, 2), |
|
beta=0.0, |
|
alpha=(torch.tensor(1.0, dtype=self.norm_factor.dtype, device=self.norm_factor.device) / self.norm_factor), |
|
) |
|
attn_scores = attn_scores.view(batch_size, num_attention_heads, query_length, key_length) |
|
|
|
if self.self_attention_relative_position_bias: |
|
mask_value = torch.finfo(attn_scores.dtype).min |
|
|
|
|
|
mask_value = torch.tensor(mask_value, dtype=attn_scores.dtype).to(attn_scores.device) |
|
attn_scores = torch.where(causal_mask, attn_scores, mask_value) |
|
|
|
if attention_mask is not None: |
|
|
|
attn_scores = attn_scores + attention_mask |
|
|
|
attn_weights = nn.functional.softmax(attn_scores, dim=-1) |
|
attn_weights = attn_weights.to(value.dtype) |
|
|
|
|
|
if head_mask is not None: |
|
attn_weights = attn_weights * head_mask |
|
|
|
attn_weights = self.attention_dropout(attn_weights) |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
return attn_output, attn_weights |
|
|
|
|
|
def attention_mask_func(attention_scores, ltor_mask): |
|
attention_scores.masked_fill_(~ltor_mask, torch.finfo(attention_scores.dtype).min) |
|
return attention_scores |
|
|
|
|
|
class MegatronGPTRotaryEmbedding(torch.nn.Module): |
|
def __init__(self, dim, max_position_embeddings, base=10000, device=None): |
|
super().__init__() |
|
|
|
self.dim = dim |
|
self.max_position_embeddings = max_position_embeddings |
|
self.base = base |
|
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
|
|
self._set_cos_sin_cache(seq_len=max_position_embeddings, device=self.inv_freq.device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos()[None, None, :, :] |
|
self.sin_cached = emb.sin()[None, None, :, :] |
|
|
|
def forward(self, x, seq_len=None): |
|
|
|
if seq_len > self.max_seq_len_cached: |
|
self._set_cos_sin_cache(seq_len=seq_len, device=x.device) |
|
return self.cos_cached[:seq_len, ...].to(x.device), self.sin_cached[:seq_len, ...].to(x.device) |
|
|
|
|
|
class MegatronGPTLinearScalingRotaryEmbedding(MegatronGPTRotaryEmbedding): |
|
"""MegatronGPTRotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" |
|
|
|
def __init__(self, dim, max_position_embeddings, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device): |
|
self.max_seq_len_cached = seq_len |
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
t = t / self.scaling_factor |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos()[None, None, :, :] |
|
self.sin_cached = emb.sin()[None, None, :, :] |
|
|
|
|
|
class MegatronGPTDynamicNTKScalingRotaryEmbedding(MegatronGPTRotaryEmbedding): |
|
"""MegatronGPTRotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" |
|
|
|
def __init__(self, dim, max_position_embeddings, base=10000, device=None, scaling_factor=1.0): |
|
self.scaling_factor = scaling_factor |
|
super().__init__(dim, max_position_embeddings, base, device) |
|
|
|
def _set_cos_sin_cache(self, seq_len, device): |
|
self.max_seq_len_cached = seq_len |
|
|
|
if seq_len > self.max_position_embeddings: |
|
base = self.base * ( |
|
(self.scaling_factor * seq_len / self.max_position_embeddings) - (self.scaling_factor - 1) |
|
) ** (self.dim / (self.dim - 2)) |
|
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) |
|
self.register_buffer("inv_freq", inv_freq) |
|
|
|
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) |
|
|
|
freqs = torch.einsum("i,j->ij", t, self.inv_freq) |
|
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
self.cos_cached = emb.cos()[None, None, :, :] |
|
self.sin_cached = emb.sin()[None, None, :, :] |
|
|
|
|
|
def rotate_half(x): |
|
"""Rotates half the hidden dims of the input.""" |
|
x1 = x[..., : x.shape[-1] // 2] |
|
x2 = x[..., x.shape[-1] // 2 :] |
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids): |
|
gather_indices = position_ids[:, None, :, None] |
|
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3]) |
|
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) |
|
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices) |
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
return q_embed, k_embed |
|
|
|
|
|
class MegatronGPTMLP(nn.Module): |
|
def __init__(self, config): |
|
super().__init__() |
|
self.fast_glu_activation = config.hidden_act in ['fast-geglu', 'fast-swiglu', 'fast-reglu'] |
|
self.glu_activation_family = self.fast_glu_activation or config.hidden_act in ['geglu','reglu','swiglu'] |
|
|
|
self.dense_h_to_4h = nn.Linear(config.hidden_size, config.intermediate_size * (2 if self.fast_glu_activation else 1), bias=config.bias) |
|
if config.hidden_act in ['geglu', 'reglu', 'swiglu']: |
|
self.dense_h_to_4h_2 = nn.Linear(config.hidden_size, config.intermediate_size, bias=config.bias) |
|
|
|
self.dense_4h_to_h = nn.Linear(config.intermediate_size, config.hidden_size, bias=config.bias) |
|
self.act = get_activation(config.hidden_act) |
|
|
|
def forward(self, hidden_states): |
|
intermediate_states = self.dense_h_to_4h(hidden_states) |
|
if self.glu_activation_family: |
|
if self.fast_glu_activation: |
|
intermediate_states, intermediate_states_2 = torch.chunk(intermediate_states, 2, dim=-1) |
|
else: |
|
intermediate_states_2 = self.dense_h_to_4h_2(hidden_states) |
|
|
|
hidden_states = self.act(intermediate_states) * intermediate_states_2 |
|
else: |
|
hidden_states = self.act(intermediate_states) |
|
hidden_states = self.dense_4h_to_h(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class MegatronGPTLayer(nn.Module): |
|
def __init__(self, config, layer_idx): |
|
super().__init__() |
|
self.input_layernorm = MegatronGPTLayerNorm(config.normalization, config.hidden_size, eps=config.layer_norm_eps) |
|
self.post_attention_layernorm = MegatronGPTLayerNorm(config.normalization, config.hidden_size, eps=config.layer_norm_eps) |
|
self.post_attention_dropout = nn.Dropout(config.hidden_dropout) |
|
self.post_mlp_dropout = nn.Dropout(config.hidden_dropout) |
|
self.self_attention = MegatronGPTAttention(config) |
|
self.mlp = MegatronGPTMLP(config) |
|
self.layer_idx = layer_idx |
|
|
|
def forward( |
|
self, |
|
hidden_states: Optional[torch.FloatTensor], |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
use_cache: Optional[bool] = False, |
|
layer_past: Optional[Tuple[torch.Tensor]] = None, |
|
output_attentions: Optional[bool] = False, |
|
): |
|
attention_layer_outputs = self.self_attention( |
|
self.input_layernorm(hidden_states), |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
layer_past=layer_past, |
|
head_mask=head_mask, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
attn_output = attention_layer_outputs[0] |
|
attn_output = self.post_attention_dropout(attn_output) |
|
|
|
|
|
|
|
|
|
attn_output = attn_output + hidden_states |
|
mlp_output = self.mlp(self.post_attention_layernorm(attn_output)) |
|
mlp_output = self.post_mlp_dropout(mlp_output) |
|
hidden_states = mlp_output + attn_output |
|
|
|
outputs = attention_layer_outputs[1:] |
|
if use_cache: |
|
outputs = (hidden_states,) + outputs |
|
else: |
|
outputs = (hidden_states,) + outputs[1:] |
|
|
|
return outputs |
|
|
|
class MegatronGPTLayerNorm(torch.nn.LayerNorm): |
|
def __init__(self, normalization, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None): |
|
normalization = normalization.lower() |
|
assert normalization in ['layernorm', 'layernorm1p', 'rmsnorm'] |
|
if normalization == 'rmsnorm': |
|
torch.nn.Module.__init__(self) |
|
self.weight = nn.Parameter(torch.ones(normalized_shape)) |
|
self.variance_epsilon = eps |
|
else: |
|
super().__init__( |
|
normalized_shape=normalized_shape, |
|
eps=eps, |
|
elementwise_affine=elementwise_affine, |
|
device=device, |
|
dtype=dtype, |
|
) |
|
self.normalization = normalization |
|
|
|
def forward(self, x): |
|
if self.normalization == 'rmsnorm': |
|
input_dtype = x.dtype |
|
x = x.to(torch.float32) |
|
variance = x.pow(2).mean(-1, keepdim=True) |
|
x = x * torch.rsqrt(variance + self.variance_epsilon) |
|
return self.weight * x.to(input_dtype) |
|
else: |
|
weight_bias = 1 if self.normalization == 'layernorm1p' else 0 |
|
return torch.nn.functional.layer_norm( |
|
x, self.normalized_shape, self.weight + weight_bias, self.bias, self.eps |
|
) |
|
|
|
|
|
|
|
MEGATRON_GPT_START_DOCSTRING = r""" |
|
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use |
|
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and |
|
behavior. |
|
|
|
Parameters: |
|
config ([`~MegatronGPTConfig`]): Model configuration class with all the parameters of the model. |
|
Initializing with a config file does not load the weights associated with the model, only the |
|
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. |
|
""" |
|
|
|
MEGATRON_GPT_INPUTS_DOCSTRING = r""" |
|
Args: |
|
input_ids (`torch.LongTensor` of shape `({0})`): |
|
Indices of input sequence tokens in the vocabulary. |
|
|
|
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and |
|
[`PreTrainedTokenizer.__call__`] for details. |
|
|
|
[What are input IDs?](../glossary#input-ids) |
|
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): |
|
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: |
|
|
|
- 1 for tokens that are **not masked**, |
|
- 0 for tokens that are **masked**. |
|
|
|
[What are attention masks?](../glossary#attention-mask) |
|
position_ids (`torch.LongTensor` of shape `({0})`, *optional*): |
|
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, |
|
config.n_positions - 1]`. |
|
|
|
[What are position IDs?](../glossary#position-ids) |
|
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): |
|
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: |
|
|
|
- 1 indicates the head is **not masked**, |
|
- 0 indicates the head is **masked**. |
|
|
|
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): |
|
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This |
|
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the |
|
model's internal embedding lookup matrix. |
|
output_attentions (`bool`, *optional*): |
|
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned |
|
tensors for more detail. |
|
output_hidden_states (`bool`, *optional*): |
|
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for |
|
more detail. |
|
return_dict (`bool`, *optional*): |
|
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. |
|
""" |
|
|
|
|
|
@add_start_docstrings( |
|
"The bare MegatronGPT Model transformer outputting raw hidden-states without any specific head on top.", |
|
MEGATRON_GPT_START_DOCSTRING, |
|
) |
|
class MegatronGPTModel(MegatronGPTPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.config = config |
|
|
|
self.embed_in = nn.Embedding(config.vocab_size, config.hidden_size) |
|
self.emb_dropout = nn.Dropout(config.hidden_dropout) |
|
self.layers = nn.ModuleList([MegatronGPTLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]) |
|
self.final_layernorm = MegatronGPTLayerNorm(config.normalization, config.hidden_size, eps=config.layer_norm_eps) |
|
|
|
self.gradient_checkpointing = False |
|
|
|
|
|
self.post_init() |
|
|
|
def get_input_embeddings(self): |
|
return self.embed_in |
|
|
|
def set_input_embeddings(self, value): |
|
self.embed_in = value |
|
|
|
@add_start_docstrings_to_model_forward(MEGATRON_GPT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, BaseModelOutputWithPast]: |
|
r""" |
|
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): |
|
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. |
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
""" |
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions |
|
output_hidden_states = ( |
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states |
|
) |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
use_cache = use_cache if use_cache is not None else self.config.use_cache |
|
|
|
if input_ids is not None and inputs_embeds is not None: |
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") |
|
elif input_ids is not None: |
|
input_shape = input_ids.size() |
|
elif inputs_embeds is not None: |
|
input_shape = inputs_embeds.size()[:-1] |
|
else: |
|
raise ValueError("You have to specify either input_ids or inputs_embeds") |
|
|
|
batch_size, seq_length = input_shape |
|
|
|
if past_key_values is None: |
|
past_length = 0 |
|
past_key_values = tuple([None] * self.config.num_hidden_layers) |
|
else: |
|
past_length = past_key_values[0][0].size(-2) |
|
|
|
if position_ids is None: |
|
device = input_ids.device if input_ids is not None else inputs_embeds.device |
|
position_ids = torch.arange(past_length, seq_length + past_length, dtype=torch.long, device=device) |
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length) |
|
else: |
|
position_ids = position_ids.view(-1, seq_length).long() |
|
|
|
|
|
if attention_mask is not None: |
|
assert batch_size > 0, "batch_size has to be defined and > 0" |
|
attention_mask = attention_mask.view(batch_size, -1) |
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask[:, None, None, :] |
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask = attention_mask.to(dtype=self.dtype) |
|
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min |
|
|
|
|
|
|
|
|
|
|
|
|
|
head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) |
|
|
|
if inputs_embeds is None: |
|
inputs_embeds = self.embed_in(input_ids) |
|
|
|
hidden_states = self.emb_dropout(inputs_embeds) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
if use_cache: |
|
logger.warning( |
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." |
|
) |
|
use_cache = False |
|
|
|
presents = () if use_cache else None |
|
all_attentions = () if output_attentions else None |
|
all_hidden_states = () if output_hidden_states else None |
|
for i, (layer, layer_past) in enumerate(zip(self.layers, past_key_values)): |
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if self.gradient_checkpointing and self.training: |
|
|
|
def create_custom_forward(module): |
|
def custom_forward(*inputs): |
|
|
|
return module(*inputs, use_cache, None, output_attentions) |
|
|
|
return custom_forward |
|
|
|
outputs = torch.utils.checkpoint.checkpoint( |
|
create_custom_forward(layer), |
|
hidden_states, |
|
attention_mask, |
|
position_ids, |
|
head_mask[i], |
|
) |
|
else: |
|
outputs = layer( |
|
hidden_states, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask[i], |
|
layer_past=layer_past, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
) |
|
hidden_states = outputs[0] |
|
if use_cache is True: |
|
presents = presents + (outputs[1],) |
|
if output_attentions: |
|
all_attentions = all_attentions + (outputs[2 if use_cache else 1],) |
|
|
|
hidden_states = self.final_layernorm(hidden_states) |
|
|
|
if output_hidden_states: |
|
all_hidden_states = all_hidden_states + (hidden_states,) |
|
|
|
if not return_dict: |
|
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None) |
|
|
|
return BaseModelOutputWithPast( |
|
last_hidden_state=hidden_states, |
|
past_key_values=presents, |
|
hidden_states=all_hidden_states, |
|
attentions=all_attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
"""MegatronGPT Model with a `language modeling` head on top for CLM fine-tuning.""", MEGATRON_GPT_START_DOCSTRING |
|
) |
|
class MegatronGPTForCausalLM(MegatronGPTPreTrainedModel): |
|
_tied_weights_keys = ["embed_out.weight"] |
|
|
|
def __init__(self, config): |
|
super().__init__(config) |
|
|
|
self.megatron_gpt = MegatronGPTModel(config) |
|
self.embed_out = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
def get_output_embeddings(self): |
|
return self.embed_out |
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
self.embed_out = new_embeddings |
|
|
|
@add_start_docstrings_to_model_forward(MEGATRON_GPT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
@replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, CausalLMOutputWithPastAndEncoding]: |
|
r""" |
|
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): |
|
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape |
|
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape |
|
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional tensors are |
|
only required when the model is used as a decoder in a Sequence to Sequence model. |
|
|
|
Contains pre-computed hidden-states (key and values in the self-attention blocks that can be used (see |
|
`past_key_values` input) to speed up sequential decoding. |
|
|
|
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that |
|
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all |
|
`decoder_input_ids` of shape `(batch_size, sequence_length)`. |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the left-to-right language modeling loss (next word prediction). Indices should be in |
|
`[-100, 0, ..., config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are |
|
ignored (masked), the loss is only computed for the tokens with labels n `[0, ..., config.vocab_size]`. |
|
use_cache (`bool`, *optional*): |
|
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see |
|
`past_key_values`). |
|
|
|
Returns: |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.megatron_gpt( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
lm_logits = self.embed_out(hidden_states) |
|
|
|
lm_loss = None |
|
if labels is not None: |
|
|
|
labels = labels.to(lm_logits.device) |
|
|
|
shift_logits = lm_logits[:, :-1, :].contiguous() |
|
labels = labels[:, 1:].contiguous() |
|
loss_fct = CrossEntropyLoss() |
|
lm_loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (lm_logits,) + outputs[1:] |
|
return ((lm_loss,) + output) if lm_loss is not None else output |
|
|
|
return CausalLMOutputWithPastAndEncoding( |
|
loss=lm_loss, |
|
logits=lm_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
encoding_states=hidden_states |
|
) |
|
|
|
def prepare_inputs_for_generation( |
|
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs |
|
): |
|
input_shape = input_ids.shape |
|
|
|
|
|
if past_key_values and past_key_values[0] is not None: |
|
input_ids = input_ids[:, -1:] |
|
|
|
position_ids = kwargs.get("position_ids", None) |
|
if attention_mask is not None and position_ids is None: |
|
|
|
position_ids = attention_mask.long().cumsum(-1) - 1 |
|
position_ids.masked_fill_(attention_mask == 0, 1) |
|
if past_key_values: |
|
position_ids = position_ids[:, -1].unsqueeze(-1) |
|
|
|
|
|
if attention_mask is None: |
|
attention_mask = input_ids.new_ones(input_shape) |
|
|
|
|
|
if inputs_embeds is not None and past_key_values is None: |
|
model_inputs = {"inputs_embeds": inputs_embeds} |
|
else: |
|
model_inputs = {"input_ids": input_ids} |
|
|
|
model_inputs.update( |
|
{ |
|
"attention_mask": attention_mask, |
|
"past_key_values": past_key_values, |
|
"position_ids": position_ids, |
|
} |
|
) |
|
|
|
return model_inputs |
|
|
|
def _reorder_cache(self, past_key_values, beam_idx): |
|
reordered_past = () |
|
for layer_past in past_key_values: |
|
reordered_past += ( |
|
tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:], |
|
) |
|
return reordered_past |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The MegatronGPT Model transformer with a sequence classification head on top (linear layer). |
|
|
|
[`MegatronGPTForSequenceClassification`] uses the last token in order to do the classification, as other causal models |
|
(e.g. GPT-1) do. |
|
|
|
Since it does classification on the last token, it requires to know the position of the last token. If a |
|
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If |
|
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the |
|
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in |
|
each row of the batch). |
|
""", |
|
MEGATRON_GPT_START_DOCSTRING, |
|
) |
|
class MegatronGPTForSequenceClassification(MegatronGPTPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.megatron_gpt = MegatronGPTModel(config) |
|
self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(MEGATRON_GPT_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutputWithPast]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.megatron_gpt( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
past_key_values=past_key_values, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
hidden_states = outputs[0] |
|
logits = self.score(hidden_states) |
|
|
|
if input_ids is not None: |
|
batch_size, sequence_length = input_ids.shape[:2] |
|
else: |
|
batch_size, sequence_length = inputs_embeds.shape[:2] |
|
|
|
if self.config.pad_token_id is None and batch_size != 1: |
|
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") |
|
if self.config.pad_token_id is None: |
|
sequence_lengths = -1 |
|
else: |
|
if input_ids is not None: |
|
sequence_lengths = (torch.ne(input_ids, self.config.pad_token_id).sum(-1) - 1).to(logits.device) |
|
else: |
|
sequence_lengths = -1 |
|
logger.warning( |
|
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " |
|
"unexpected if using padding tokens in conjunction with `inputs_embeds.`" |
|
) |
|
|
|
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
self.config.problem_type = "multi_label_classification" |
|
|
|
if self.config.problem_type == "regression": |
|
loss_fct = MSELoss() |
|
if self.num_labels == 1: |
|
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) |
|
else: |
|
loss = loss_fct(pooled_logits, labels) |
|
elif self.config.problem_type == "single_label_classification": |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) |
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = BCEWithLogitsLoss() |
|
loss = loss_fct(pooled_logits, labels) |
|
if not return_dict: |
|
output = (pooled_logits,) + outputs[1:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return SequenceClassifierOutputWithPast( |
|
loss=loss, |
|
logits=pooled_logits, |
|
past_key_values=outputs.past_key_values, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
class MegatronGPTForTokenClassification(MegatronGPTPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
|
|
self.megatron_gpt = MegatronGPTModel(config) |
|
self.dropout = nn.Dropout(config.classifier_dropout) |
|
self.classifier = nn.Linear(config.hidden_size, config.num_labels) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(MEGATRON_GPT_INPUTS_DOCSTRING) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
labels: Optional[torch.LongTensor] = None, |
|
use_cache: Optional[bool] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, TokenClassifierOutput]: |
|
r""" |
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): |
|
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., |
|
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If |
|
`config.num_labels > 1` a classification loss is computed (Cross-Entropy). |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.megatron_gpt( |
|
input_ids, |
|
past_key_values=past_key_values, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
use_cache=use_cache, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
hidden_states = outputs[0] |
|
hidden_states = self.dropout(hidden_states) |
|
logits = self.classifier(hidden_states) |
|
|
|
loss = None |
|
if labels is not None: |
|
labels = labels.to(logits.device) |
|
loss_fct = CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
if not return_dict: |
|
output = (logits,) + outputs[2:] |
|
return ((loss,) + output) if loss is not None else output |
|
|
|
return TokenClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
|
|
@add_start_docstrings( |
|
""" |
|
The Megatron-GPT Model transformer with a span classification head on top for extractive question-answering tasks like |
|
SQuAD (a linear layer on top of the hidden-states output to compute `span start logits` and `span end logits`). |
|
""", |
|
MEGATRON_GPT_START_DOCSTRING, |
|
) |
|
class MegatronGPTForQuestionAnswering(MegatronGPTPreTrainedModel): |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.num_labels = config.num_labels |
|
self.megatron_gpt = MegatronGPTModel(config) |
|
self.qa_outputs = nn.Linear(config.hidden_size, 2) |
|
|
|
|
|
self.post_init() |
|
|
|
@add_start_docstrings_to_model_forward(MEGATRON_GPT_INPUTS_DOCSTRING.format("batch_size, sequence_length")) |
|
def forward( |
|
self, |
|
input_ids: Optional[torch.LongTensor] = None, |
|
attention_mask: Optional[torch.FloatTensor] = None, |
|
token_type_ids: Optional[torch.LongTensor] = None, |
|
position_ids: Optional[torch.LongTensor] = None, |
|
head_mask: Optional[torch.FloatTensor] = None, |
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
start_positions: Optional[torch.LongTensor] = None, |
|
end_positions: Optional[torch.LongTensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
) -> Union[Tuple, QuestionAnsweringModelOutput]: |
|
r""" |
|
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the start of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): |
|
Labels for position (index) of the end of the labelled span for computing the token classification loss. |
|
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence |
|
are not taken into account for computing the loss. |
|
""" |
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
outputs = self.megatron_gpt( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
|
|
sequence_output = outputs[0] |
|
|
|
logits = self.qa_outputs(sequence_output) |
|
start_logits, end_logits = logits.split(1, dim=-1) |
|
start_logits = start_logits.squeeze(-1).contiguous() |
|
end_logits = end_logits.squeeze(-1).contiguous() |
|
|
|
total_loss = None |
|
if start_positions is not None and end_positions is not None: |
|
|
|
if len(start_positions.size()) > 1: |
|
start_positions = start_positions.squeeze(-1).to(start_logits.device) |
|
if len(end_positions.size()) > 1: |
|
end_positions = end_positions.squeeze(-1).to(end_logits.device) |
|
|
|
ignored_index = start_logits.size(1) |
|
start_positions = start_positions.clamp(0, ignored_index) |
|
end_positions = end_positions.clamp(0, ignored_index) |
|
|
|
loss_fct = CrossEntropyLoss(ignore_index=ignored_index) |
|
start_loss = loss_fct(start_logits, start_positions) |
|
end_loss = loss_fct(end_logits, end_positions) |
|
total_loss = (start_loss + end_loss) / 2 |
|
|
|
if not return_dict: |
|
output = (start_logits, end_logits) + outputs[2:] |
|
return ((total_loss,) + output) if total_loss is not None else output |
|
|
|
return QuestionAnsweringModelOutput( |
|
loss=total_loss, |
|
start_logits=start_logits, |
|
end_logits=end_logits, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|