--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer metrics: - accuracy widget: - text: 'first: We recommend employees start a support group to share and address workplace concerns. second: Grievance Resolution Committee: A committee addresses formal grievances and ensures a fair resolution process.' - text: 'first: Supervisors are encouraged to watch TED talks on communication to enhance their skills. second: Progressive Discipline: Disciplinary actions are proportionate and follow a structured process.' - text: 'first: Grievance Resolution Committee: A committee addresses formal grievances and ensures a fair resolution process. second: We provide employees with a comprehensive handbook outlining our dispute resolution process for clarity.' - text: 'first: We recommend employees seek advice from their peers and mentors to navigate workplace issues. second: We use technology-based solutions to facilitate virtual conflict resolution discussions.' - text: 'first: We''ve introduced a complaint of the month contest to highlight and address concerns effectively. second: Our company has a clear conflict resolution policy that all employees must follow.' pipeline_tag: text-classification inference: true base_model: sentence-transformers/all-MiniLM-L6-v2 model-index: - name: SetFit with sentence-transformers/all-MiniLM-L6-v2 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.7272727272727273 name: Accuracy --- # SetFit with sentence-transformers/all-MiniLM-L6-v2 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 256 tokens - **Number of Classes:** 2 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.7273 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("sijan1/setfit-finetuned-fairness") # Run inference preds = model("first: We've introduced a complaint of the month contest to highlight and address concerns effectively. second: Our company has a clear conflict resolution policy that all employees must follow.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 24 | 25.5 | 27 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 1 | | 1 | 1 | ### Training Hyperparameters - batch_size: (4, 4) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 30 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.1 | 1 | 0.0141 | - | | 5.0 | 50 | 0.0012 | - | | 10.0 | 100 | 0.0006 | - | | 0.1 | 1 | 0.0005 | - | | 5.0 | 50 | 0.0005 | - | | 10.0 | 100 | 0.0002 | - | | 15.0 | 150 | 0.0002 | - | | 20.0 | 200 | 0.0001 | - | | 25.0 | 250 | 0.0001 | - | | 30.0 | 300 | 0.0001 | - | | 35.0 | 350 | 0.0002 | - | | 40.0 | 400 | 0.0 | - | | 45.0 | 450 | 0.0 | - | | 50.0 | 500 | 0.0 | - | | 55.0 | 550 | 0.0 | - | | 60.0 | 600 | 0.0 | - | | 65.0 | 650 | 0.0001 | - | | 70.0 | 700 | 0.0 | - | | 75.0 | 750 | 0.0 | - | | 80.0 | 800 | 0.0 | - | | 85.0 | 850 | 0.0 | - | | 90.0 | 900 | 0.0 | - | | 95.0 | 950 | 0.0 | - | | 100.0 | 1000 | 0.0 | - | | 0.0667 | 1 | 0.0 | - | | 0.8333 | 50 | 0.0 | - | | 0.0222 | 1 | 0.0 | - | | 0.8333 | 50 | 0.0 | - | | 0.0111 | 1 | 0.0001 | - | | 0.5556 | 50 | 0.0 | - | | 0.0333 | 1 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.0.3 - Sentence Transformers: 2.3.1 - Transformers: 4.37.2 - PyTorch: 2.1.0+cu121 - Datasets: 2.17.1 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```