Commit
·
3c58c10
1
Parent(s):
1959fe2
Update README.md
Browse files
README.md
CHANGED
@@ -29,39 +29,53 @@ pip install torch==2.0.0
|
|
29 |
```
|
30 |
|
31 |
```python
|
|
|
32 |
import torch
|
33 |
-
from transformers import pipeline
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
```
|
55 |
|
56 |
-
|
57 |
|
58 |
```python
|
59 |
-
|
|
|
|
|
|
|
60 |
```
|
61 |
|
62 |
-
```bash
|
63 |
-
Why is drinking water so healthy?<|endoftext|>
|
64 |
-
```
|
65 |
|
66 |
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
|
67 |
|
|
|
29 |
```
|
30 |
|
31 |
```python
|
32 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
33 |
import torch
|
|
|
34 |
|
35 |
+
def generate_response(prompt, model_name):
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
37 |
+
model_name,
|
38 |
+
use_fast=True,
|
39 |
+
trust_remote_code=True,
|
40 |
+
)
|
41 |
+
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
model_name,
|
44 |
+
torch_dtype=torch.float32,
|
45 |
+
device_map={"": "cpu"},
|
46 |
+
trust_remote_code=True,
|
47 |
+
)
|
48 |
+
model.cpu().eval()
|
49 |
+
|
50 |
+
inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cpu")
|
51 |
+
|
52 |
+
tokens = model.generate(
|
53 |
+
input_ids=inputs["input_ids"],
|
54 |
+
attention_mask=inputs["attention_mask"],
|
55 |
+
min_new_tokens=2,
|
56 |
+
max_new_tokens=500,
|
57 |
+
do_sample=False,
|
58 |
+
num_beams=2,
|
59 |
+
temperature=float(0.0),
|
60 |
+
repetition_penalty=float(1.0),
|
61 |
+
renormalize_logits=True
|
62 |
+
)[0]
|
63 |
+
|
64 |
+
tokens = tokens[inputs["input_ids"].shape[1]:]
|
65 |
+
answer = tokenizer.decode(tokens, skip_special_tokens=True)
|
66 |
+
|
67 |
+
return answer
|
68 |
```
|
69 |
|
70 |
+
# Example usage
|
71 |
|
72 |
```python
|
73 |
+
model_name = "diegomiranda/EleutherAI-70M-cypher-generator"
|
74 |
+
prompt = "Create a Cypher statement to answer the following question:Retorne os processos de Direito Tributário que se baseiam em lei 939 de 1992?<|endoftext|>"
|
75 |
+
response = generate_response(prompt, model_name)
|
76 |
+
print(response)
|
77 |
```
|
78 |
|
|
|
|
|
|
|
79 |
|
80 |
Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer. If the model and the tokenizer are fully supported in the `transformers` package, this will allow you to set `trust_remote_code=False`.
|
81 |
|