Update README.md
Browse files
README.md
CHANGED
@@ -19,29 +19,85 @@ These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0
|
|
19 |
|
20 |
## Usage
|
21 |
|
22 |
-
Make sure to
|
23 |
|
24 |
```bash
|
25 |
pip install accelerate transformers safetensors diffusers
|
26 |
```
|
27 |
|
28 |
-
And then
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
```python
|
31 |
import torch
|
32 |
import numpy as np
|
33 |
from PIL import Image
|
34 |
|
35 |
-
from transformers import DPTFeatureExtractor, DPTForDepthEstimation
|
36 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
37 |
from diffusers.utils import load_image
|
38 |
|
39 |
-
|
40 |
-
depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda")
|
41 |
-
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas")
|
42 |
controlnet = ControlNetModel.from_pretrained(
|
43 |
"diffusers/controlnet-depth-sdxl-1.0",
|
44 |
-
variant="fp16",
|
45 |
use_safetensors=True,
|
46 |
torch_dtype=torch.float16,
|
47 |
).to("cuda")
|
@@ -56,41 +112,26 @@ pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
|
|
56 |
).to("cuda")
|
57 |
pipe.enable_model_cpu_offload()
|
58 |
|
59 |
-
def get_depth_map(image):
|
60 |
-
image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda")
|
61 |
-
with torch.no_grad(), torch.autocast("cuda"):
|
62 |
-
depth_map = depth_estimator(image).predicted_depth
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
mode="bicubic",
|
68 |
-
align_corners=False,
|
69 |
-
)
|
70 |
-
depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True)
|
71 |
-
depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True)
|
72 |
-
depth_map = (depth_map - depth_min) / (depth_max - depth_min)
|
73 |
-
image = torch.cat([depth_map] * 3, dim=1)
|
74 |
|
75 |
-
|
76 |
-
image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8))
|
77 |
-
return image
|
78 |
|
|
|
79 |
|
80 |
-
|
81 |
-
image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png")
|
82 |
-
controlnet_conditioning_scale = 0.5 # recommended for good generalization
|
83 |
-
|
84 |
-
depth_image = get_depth_map(image)
|
85 |
-
|
86 |
images = pipe(
|
87 |
-
prompt, image=depth_image, num_inference_steps=
|
88 |
).images
|
89 |
images[0]
|
90 |
|
91 |
-
images[0].save(f"
|
92 |
```
|
93 |
|
|
|
|
|
94 |
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
|
95 |
|
96 |
### Training
|
|
|
19 |
|
20 |
## Usage
|
21 |
|
22 |
+
Make sure first to install the libraries:
|
23 |
|
24 |
```bash
|
25 |
pip install accelerate transformers safetensors diffusers
|
26 |
```
|
27 |
|
28 |
+
And then setup the zoe-depth model
|
29 |
+
|
30 |
+
```
|
31 |
+
import torch
|
32 |
+
import matplotlib
|
33 |
+
import matplotlib.cm
|
34 |
+
import numpy as np
|
35 |
+
|
36 |
+
torch.hub.help("intel-isl/MiDaS", "DPT_BEiT_L_384", force_reload=True) # Triggers fresh download of MiDaS repo
|
37 |
+
model_zoe_n = torch.hub.load("isl-org/ZoeDepth", "ZoeD_NK", pretrained=True).eval()
|
38 |
+
model_zoe_n = model_zoe_n.to("cuda")
|
39 |
+
|
40 |
+
|
41 |
+
def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None):
|
42 |
+
if isinstance(value, torch.Tensor):
|
43 |
+
value = value.detach().cpu().numpy()
|
44 |
+
|
45 |
+
value = value.squeeze()
|
46 |
+
if invalid_mask is None:
|
47 |
+
invalid_mask = value == invalid_val
|
48 |
+
mask = np.logical_not(invalid_mask)
|
49 |
+
|
50 |
+
# normalize
|
51 |
+
vmin = np.percentile(value[mask],2) if vmin is None else vmin
|
52 |
+
vmax = np.percentile(value[mask],85) if vmax is None else vmax
|
53 |
+
if vmin != vmax:
|
54 |
+
value = (value - vmin) / (vmax - vmin) # vmin..vmax
|
55 |
+
else:
|
56 |
+
# Avoid 0-division
|
57 |
+
value = value * 0.
|
58 |
+
|
59 |
+
# squeeze last dim if it exists
|
60 |
+
# grey out the invalid values
|
61 |
+
|
62 |
+
value[invalid_mask] = np.nan
|
63 |
+
cmapper = matplotlib.cm.get_cmap(cmap)
|
64 |
+
if value_transform:
|
65 |
+
value = value_transform(value)
|
66 |
+
# value = value / value.max()
|
67 |
+
value = cmapper(value, bytes=True) # (nxmx4)
|
68 |
+
|
69 |
+
# img = value[:, :, :]
|
70 |
+
img = value[...]
|
71 |
+
img[invalid_mask] = background_color
|
72 |
+
|
73 |
+
# gamma correction
|
74 |
+
img = img / 255
|
75 |
+
img = np.power(img, 2.2)
|
76 |
+
img = img * 255
|
77 |
+
img = img.astype(np.uint8)
|
78 |
+
img = Image.fromarray(img)
|
79 |
+
return img
|
80 |
+
|
81 |
+
|
82 |
+
def get_zoe_depth_map(image):
|
83 |
+
with torch.autocast("cuda", enabled=True):
|
84 |
+
depth = model_zoe_n.infer_pil(image)
|
85 |
+
depth = colorize(depth, cmap="gray_r", gamma_corrected=True)
|
86 |
+
return depth
|
87 |
+
```
|
88 |
+
|
89 |
+
Now we're ready to go:
|
90 |
|
91 |
```python
|
92 |
import torch
|
93 |
import numpy as np
|
94 |
from PIL import Image
|
95 |
|
|
|
96 |
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
|
97 |
from diffusers.utils import load_image
|
98 |
|
|
|
|
|
|
|
99 |
controlnet = ControlNetModel.from_pretrained(
|
100 |
"diffusers/controlnet-depth-sdxl-1.0",
|
|
|
101 |
use_safetensors=True,
|
102 |
torch_dtype=torch.float16,
|
103 |
).to("cuda")
|
|
|
112 |
).to("cuda")
|
113 |
pipe.enable_model_cpu_offload()
|
114 |
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
prompt = "pixel-art margot robbie as barbie, in a coupé . low-res, blocky, pixel art style, 8-bit graphics"
|
117 |
+
negative_prompt = "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic"
|
118 |
+
image = load_image("https://media.vogue.fr/photos/62bf04b69a57673c725432f3/3:2/w_1793,h_1195,c_limit/rev-1-Barbie-InstaVert_High_Res_JPEG.jpeg")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
controlnet_conditioning_scale = 0.55
|
|
|
|
|
121 |
|
122 |
+
depth_image = get_zoe_depth_map(image).resize((1088, 896))
|
123 |
|
124 |
+
generator = torch.Generator("cuda").manual_seed(978364352)
|
|
|
|
|
|
|
|
|
|
|
125 |
images = pipe(
|
126 |
+
prompt, image=depth_image, num_inference_steps=50, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator
|
127 |
).images
|
128 |
images[0]
|
129 |
|
130 |
+
images[0].save(f"pixel-barbie.png")
|
131 |
```
|
132 |
|
133 |
+
![images_1)](./barbie.png)
|
134 |
+
|
135 |
To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl).
|
136 |
|
137 |
### Training
|