--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - controlnet inference: false --- # SDXL-controlnet: Zoe-Depth These are ControlNet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with zoe depth conditioning. [Zoe-depth](https://github.com/isl-org/ZoeDepth) is an open-source SOTA depth estimation model which produces high-quality depth maps, which are better suited for conditioning. You can find some example images in the following. ![images_0)](./zoe-depth-example.png) ![images_2](./zoe-megatron.png) ## Usage Make sure first to install the libraries: ```bash pip install accelerate transformers safetensors diffusers ``` And then setup the zoe-depth model ``` import torch import matplotlib import matplotlib.cm import numpy as np torch.hub.help("intel-isl/MiDaS", "DPT_BEiT_L_384", force_reload=True) # Triggers fresh download of MiDaS repo model_zoe_n = torch.hub.load("isl-org/ZoeDepth", "ZoeD_NK", pretrained=True).eval() model_zoe_n = model_zoe_n.to("cuda") def colorize(value, vmin=None, vmax=None, cmap='gray_r', invalid_val=-99, invalid_mask=None, background_color=(128, 128, 128, 255), gamma_corrected=False, value_transform=None): if isinstance(value, torch.Tensor): value = value.detach().cpu().numpy() value = value.squeeze() if invalid_mask is None: invalid_mask = value == invalid_val mask = np.logical_not(invalid_mask) # normalize vmin = np.percentile(value[mask],2) if vmin is None else vmin vmax = np.percentile(value[mask],85) if vmax is None else vmax if vmin != vmax: value = (value - vmin) / (vmax - vmin) # vmin..vmax else: # Avoid 0-division value = value * 0. # squeeze last dim if it exists # grey out the invalid values value[invalid_mask] = np.nan cmapper = matplotlib.cm.get_cmap(cmap) if value_transform: value = value_transform(value) # value = value / value.max() value = cmapper(value, bytes=True) # (nxmx4) # img = value[:, :, :] img = value[...] img[invalid_mask] = background_color # gamma correction img = img / 255 img = np.power(img, 2.2) img = img * 255 img = img.astype(np.uint8) img = Image.fromarray(img) return img def get_zoe_depth_map(image): with torch.autocast("cuda", enabled=True): depth = model_zoe_n.infer_pil(image) depth = colorize(depth, cmap="gray_r") return depth ``` Now we're ready to go: ```python import torch import numpy as np from PIL import Image from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers.utils import load_image controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-zoe-depth-sdxl-1.0", use_safetensors=True, torch_dtype=torch.float16, ).to("cuda") vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda") pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, variant="fp16", use_safetensors=True, torch_dtype=torch.float16, ).to("cuda") pipe.enable_model_cpu_offload() prompt = "pixel-art margot robbie as barbie, in a coupé . low-res, blocky, pixel art style, 8-bit graphics" negative_prompt = "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic" image = load_image("https://media.vogue.fr/photos/62bf04b69a57673c725432f3/3:2/w_1793,h_1195,c_limit/rev-1-Barbie-InstaVert_High_Res_JPEG.jpeg") controlnet_conditioning_scale = 0.55 depth_image = get_zoe_depth_map(image).resize((1088, 896)) generator = torch.Generator("cuda").manual_seed(978364352) images = pipe( prompt, image=depth_image, num_inference_steps=50, controlnet_conditioning_scale=controlnet_conditioning_scale, generator=generator ).images images[0] images[0].save(f"pixel-barbie.png") ``` ![images_1)](./barbie.png) To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl). ### Training Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md). #### Training data and Compute The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs. #### Batch size Data parallel with a single gpu batch size of 8 for a total batch size of 256. #### Hyper Parameters Constant learning rate of 1e-5. #### Mixed precision fp16