|
from typing import Dict, List, Any |
|
import torch |
|
from base64 import b64decode |
|
from diffusers import AutoencoderKL |
|
from diffusers.image_processor import VaeImageProcessor |
|
|
|
class EndpointHandler: |
|
def __init__(self, path=""): |
|
self.device = "cuda" |
|
self.dtype = torch.float16 |
|
self.vae = AutoencoderKL.from_pretrained(path, torch_dtype=self.dtype).to(self.device, self.dtype).eval() |
|
|
|
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) |
|
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) |
|
|
|
@torch.no_grad() |
|
def __call__(self, data: Any) -> List[List[Dict[str, float]]]: |
|
""" |
|
Args: |
|
data (:obj:): |
|
includes the input data and the parameters for the inference. |
|
""" |
|
tensor = data["inputs"] |
|
tensor = b64decode(tensor.encode("utf-8")) |
|
parameters = data.get("parameters", {}) |
|
if "shape" not in parameters: |
|
raise ValueError("Expected `shape` in parameters.") |
|
if "dtype" not in parameters: |
|
raise ValueError("Expected `dtype` in parameters.") |
|
|
|
DTYPE_MAP = { |
|
"float16": torch.float16, |
|
"float32": torch.float32, |
|
"bfloat16": torch.bfloat16, |
|
} |
|
|
|
shape = parameters.get("shape") |
|
dtype = DTYPE_MAP.get(parameters.get("dtype")) |
|
tensor = torch.frombuffer(bytearray(tensor), dtype=dtype).reshape(shape) |
|
|
|
needs_upcasting = ( |
|
self.vae.dtype == torch.float16 and self.vae.config.force_upcast |
|
) |
|
if needs_upcasting: |
|
self.vae = self.vae.to(torch.float32) |
|
tensor = tensor.to(self.device, torch.float32) |
|
else: |
|
tensor = tensor.to(self.device, self.dtype) |
|
|
|
|
|
|
|
has_latents_mean = ( |
|
hasattr(self.vae.config, "latents_mean") |
|
and self.vae.config.latents_mean is not None |
|
) |
|
has_latents_std = ( |
|
hasattr(self.vae.config, "latents_std") |
|
and self.vae.config.latents_std is not None |
|
) |
|
if has_latents_mean and has_latents_std: |
|
latents_mean = ( |
|
torch.tensor(self.vae.config.latents_mean) |
|
.view(1, 4, 1, 1) |
|
.to(tensor.device, tensor.dtype) |
|
) |
|
latents_std = ( |
|
torch.tensor(self.vae.config.latents_std) |
|
.view(1, 4, 1, 1) |
|
.to(tensor.device, tensor.dtype) |
|
) |
|
tensor = ( |
|
tensor * latents_std / self.vae.config.scaling_factor + latents_mean |
|
) |
|
else: |
|
tensor = tensor / self.vae.config.scaling_factor |
|
|
|
with torch.no_grad(): |
|
image = self.vae.decode(tensor, return_dict=False)[0] |
|
|
|
if needs_upcasting: |
|
self.vae.to(dtype=torch.float16) |
|
|
|
image = self.image_processor.postprocess(image, output_type="pil") |
|
|
|
return image[0] |
|
|