File size: 1,807 Bytes
6c27fdd 2438a7d 6c27fdd 2438a7d 6c27fdd 2438a7d 6c27fdd 2438a7d 6c27fdd 2438a7d 6c27fdd 2438a7d 6c27fdd 2438a7d 6c27fdd 2438a7d 6c27fdd 2438a7d 6c27fdd 2438a7d 6c27fdd 2438a7d 6c27fdd 2438a7d 35016b9 6c27fdd 35016b9 6c27fdd 35016b9 6c27fdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
---
language:
- en
license: creativeml-openrail-m
tags:
- stable-diffusion
- stable-diffusion-diffusers
- inpainting
- art
- artistic
- diffusers
- anime
- absolute-realism
---
# Absolute realism 1.6525 inpainting
`lykon-absolute-realism/absolute-realism-1.6525-inpainting` is a Stable Diffusion Inpainting model that has been fine-tuned on [runwayml/stable-diffusion-inpainting](https://huggingface.co/runwayml/stable-diffusion-inpainting).
Please consider supporting me:
- on [Patreon](https://www.patreon.com/Lykon275)
- or [buy me a coffee](https://snipfeed.co/lykon)
## Diffusers
For more general information on how to run inpainting models with 🧨 Diffusers, see [the docs](https://huggingface.co/docs/diffusers/using-diffusers/inpaint).
1. Installation
```
pip install diffusers transformers accelerate
```
2. Run
```py
from diffusers import AutoPipelineForInpainting, DEISMultistepScheduler
import torch
from diffusers.utils import load_image
pipe = AutoPipelineForInpainting.from_pretrained('lykon-absolute-realism/absolute-realism-1.6525-inpainting', torch_dtype=torch.float16, variant="fp16")
pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config)
pipe = pipe.to("cuda")
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png"
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png"
image = load_image(img_url)
mask_image = load_image(mask_url)
prompt = "a majestic tiger sitting on a park bench"
generator = torch.manual_seed(33)
image = pipe(prompt, image=image, mask_image=mask_image, generator=generator, num_inference_steps=25).images[0]
image.save("./image.png")
```
![](./image.png)
|