|
|
|
|
|
from diffusers import DiffusionPipeline, StableDiffusionPipeline, HeunDiscreteScheduler |
|
import torch |
|
import os |
|
|
|
seed = 33 |
|
inference_steps = 25 |
|
|
|
old_pipe = DiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", custom_pipeline="sd_text2img_k_diffusion") |
|
old_pipe = old_pipe.to("cuda") |
|
|
|
for prompt in ["astronaut riding horse", "whale falling from sky", "magical forest", "highly photorealistic picture of johnny depp"]: |
|
|
|
|
|
for sampler in ["sample_heun"]: |
|
old_pipe.set_sampler(sampler) |
|
torch.manual_seed(0) |
|
image = old_pipe(prompt, num_inference_steps=inference_steps).images[0] |
|
folder = f"a_{'_'.join(prompt.split())}" |
|
os.makedirs(f"/home/patrick_huggingface_co/images/{folder}", exist_ok=True) |
|
image.save(f"/home/patrick_huggingface_co/images/{folder}/{sampler}.png") |
|
|
|
pipe = StableDiffusionPipeline(**old_pipe.components) |
|
pipe = pipe.to("cuda") |
|
|
|
|
|
|
|
|
|
|
|
if sampler == "sample_heun": |
|
pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
torch.manual_seed(0) |
|
image = pipe(prompt, num_inference_steps=inference_steps).images[0] |
|
|
|
image.save(f"/home/patrick_huggingface_co/images/{folder}/hf_{sampler}.png") |
|
break |
|
|