patrickvonplaten commited on
Commit
452abeb
1 Parent(s): 01ee377
Files changed (1) hide show
  1. parti_prompts.py +24 -19
parti_prompts.py CHANGED
@@ -1,6 +1,7 @@
1
  #!/usr/bin/env python3
2
  from diffusers import DiffusionPipeline, DDIMScheduler
3
  import argparse
 
4
  import torch
5
  from datasets import load_dataset
6
  import PIL
@@ -12,12 +13,12 @@ def resize(image: PIL.Image):
12
  return image.resize(IMAGE_OUTPUT_SIZE, resample=PIL.Image.Resampling.LANCZOS)
13
 
14
  def get_sd_eval(ckpt, guidance_scale=7.5):
15
- pipe = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16)
16
  pipe.to("cuda")
17
- pipe.scheduler = DDIMScheduler.from_config(pipe.config)
18
 
19
- def sd_eval(prompt):
20
- images = pipe(prompt, num_inference_steps=100, guidance_scale=guidance_scale).images
21
  images = [resize(image) for image in images]
22
  return images
23
 
@@ -28,28 +29,28 @@ def get_karlo_eval(ckpt):
28
  pipe.to("cuda")
29
 
30
  def karlo_eval(prompt):
31
- images = pipe(prompt, prior_num_inference_steps=50, decoder_num_inference_steps=100).images
32
  return images
33
 
34
  return karlo_eval
35
 
36
  def get_if_eval(ckpt):
37
- pipe_low = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16)
38
  pipe_low.enable_model_cpu_offload()
39
 
40
- pipe_up = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0", text_encoder=pipe_low.text_encoder, torch_dtype=torch.float16)
41
  pipe_up.enable_model_cpu_offload()
42
 
43
- def sd_eval(prompt):
44
- images = pipe_low(prompt, num_inference_steps=100, output_type="pt").images
45
- images = pipe_up(promtp=prompt, images=images, num_inference_steps=100).images
46
  return images
47
 
48
- return sd_eval
49
 
50
  MODELS = {
51
  "runwayml/stable-diffusion-v1-5": get_sd_eval,
52
- "stabilityai/stable-diffusion-v2-1": get_sd_eval,
53
  "kakaobrain/karlo-alpha": get_karlo_eval,
54
  "DeepFloyd/IF-I-XL-v1.0": get_if_eval,
55
  }
@@ -59,24 +60,28 @@ MODELS = {
59
 
60
  if __name__ == "__main__":
61
  parser = argparse.ArgumentParser(description='Run Parti Prompt Evaluation')
62
- parser.add_argument('model_repo_or_id', type=str, help='ID or URL of the model repository.', required=True)
63
  parser.add_argument('--dataset_repo_or_id', type=str, default='diffusers/prompt_generations', help='ID or URL of the dataset repository (default: "diffusers/prompt_generations")')
64
  parser.add_argument('--batch_size', type=int, default=8, help="Batch size for the eval function")
65
  parser.add_argument('--upload_to_hub', action='store_true', help='whether to upload the dataset to the Hugging Face dataset hub')
 
66
 
67
  args = parser.parse_args()
68
 
69
- eval_fn = MODELS[args.model_repo_or_id](args.model_repo_or_id)
70
 
71
- dataset = load_dataset("nateraw/parti-prompts")
72
 
73
  def map_fn(batch):
74
- batch["images"] = eval_fn(batch["prompt"])
 
 
 
75
  return batch
76
 
77
- dataset_images = dataset.map(map_fn, batched=True, batch_size=8)
78
 
79
  if args.upload_to_hub:
80
- dataset.push_to_hub(args.dataset_repo_or_id)
81
  else:
82
- dataset.save_to_disk(args.dataset_repo_or_id.split("/")[-1])
 
1
  #!/usr/bin/env python3
2
  from diffusers import DiffusionPipeline, DDIMScheduler
3
  import argparse
4
+ from diffusers.pipelines.stable_diffusion import safety_checker
5
  import torch
6
  from datasets import load_dataset
7
  import PIL
 
13
  return image.resize(IMAGE_OUTPUT_SIZE, resample=PIL.Image.Resampling.LANCZOS)
14
 
15
  def get_sd_eval(ckpt, guidance_scale=7.5):
16
+ pipe = DiffusionPipeline.from_pretrained(ckpt, torch_dtype=torch.float16, safety_checker=None)
17
  pipe.to("cuda")
18
+ pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
19
 
20
+ def sd_eval(prompt, generator=None):
21
+ images = pipe(prompt, generator=generator, num_inference_steps=NUM_INFERENCE_STEPS, guidance_scale=guidance_scale).images
22
  images = [resize(image) for image in images]
23
  return images
24
 
 
29
  pipe.to("cuda")
30
 
31
  def karlo_eval(prompt):
32
+ images = pipe(prompt, prior_num_inference_steps=50, decoder_num_inference_steps=NUM_INFERENCE_STEPS).images
33
  return images
34
 
35
  return karlo_eval
36
 
37
  def get_if_eval(ckpt):
38
+ pipe_low = DiffusionPipeline.from_pretrained(ckpt, safety_checker=None, torch_dtype=torch.float16)
39
  pipe_low.enable_model_cpu_offload()
40
 
41
+ pipe_up = DiffusionPipeline.from_pretrained("DeepFloyd/IF-II-L-v1.0", safety_checker=None, text_encoder=pipe_low.text_encoder, torch_dtype=torch.float16)
42
  pipe_up.enable_model_cpu_offload()
43
 
44
+ def if_eval(prompt, generator=None):
45
+ images = pipe_low(prompt, num_inference_steps=NUM_INFERENCE_STEPS, generator=generator, output_type="pt").images
46
+ images = pipe_up(promtp=prompt, images=images, num_inference_steps=NUM_INFERENCE_STEPS).images
47
  return images
48
 
49
+ return if_eval
50
 
51
  MODELS = {
52
  "runwayml/stable-diffusion-v1-5": get_sd_eval,
53
+ "stabilityai/stable-diffusion-2-1": get_sd_eval,
54
  "kakaobrain/karlo-alpha": get_karlo_eval,
55
  "DeepFloyd/IF-I-XL-v1.0": get_if_eval,
56
  }
 
60
 
61
  if __name__ == "__main__":
62
  parser = argparse.ArgumentParser(description='Run Parti Prompt Evaluation')
63
+ parser.add_argument('model_repo_or_id', type=str, help='ID or URL of the model repository.')
64
  parser.add_argument('--dataset_repo_or_id', type=str, default='diffusers/prompt_generations', help='ID or URL of the dataset repository (default: "diffusers/prompt_generations")')
65
  parser.add_argument('--batch_size', type=int, default=8, help="Batch size for the eval function")
66
  parser.add_argument('--upload_to_hub', action='store_true', help='whether to upload the dataset to the Hugging Face dataset hub')
67
+ parser.add_argument('--seed', type=int, default=0, help='Random seed')
68
 
69
  args = parser.parse_args()
70
 
71
+ dataset = load_dataset("nateraw/parti-prompts")["train"]
72
 
73
+ eval_fn = MODELS[args.model_repo_or_id](args.model_repo_or_id)
74
 
75
  def map_fn(batch):
76
+ generators = [torch.Generator(device="cuda").manual_seed(args.seed) for _ in range(args.batch_size)]
77
+ batch["images"] = eval_fn(batch["Prompt"], generator=generators)
78
+ batch["model_name"] = len(batch["images"]) * [args.model_repo_or_id]
79
+ batch["seed"] = len(batch["images"]) * [args.seed]
80
  return batch
81
 
82
+ dataset_images = dataset.map(map_fn, batched=True, batch_size=args.batch_size)
83
 
84
  if args.upload_to_hub:
85
+ dataset_images.push_to_hub(args.dataset_repo_or_id)
86
  else:
87
+ dataset_images.save_to_disk(args.dataset_repo_or_id.split("/")[-1])