Update README.md
Browse files
README.md
CHANGED
@@ -7,90 +7,89 @@ base_model:
|
|
7 |
---
|
8 |
Predicts dogs breed based on an image.
|
9 |
|
10 |
-
Achieved about
|
11 |
|
12 |
See [my Kaggle notebook](https://www.kaggle.com/code/dima806/70-dog-breed-image-detection-vit) and [my Medium article](https://medium.com/gitconnected/paws-and-pixels-creating-a-dog-breeds-classifier-with-googles-vision-transformer-431137422830) for more details.
|
13 |
|
14 |
-
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6449300e3adf50d864095b90/
|
15 |
|
16 |
```
|
17 |
Classification report:
|
18 |
|
19 |
precision recall f1-score support
|
20 |
|
21 |
-
Afghan 0.
|
22 |
-
African Wild Dog 1.0000 1.0000 1.0000
|
23 |
-
Airedale
|
24 |
-
American
|
25 |
-
American
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
Bull
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
Yorkie 0.8947 0.9770 0.9341 87
|
92 |
|
93 |
-
accuracy 0.
|
94 |
-
macro avg 0.
|
95 |
-
weighted avg 0.
|
96 |
```
|
|
|
7 |
---
|
8 |
Predicts dogs breed based on an image.
|
9 |
|
10 |
+
Achieved about 92% accuracy on unseen (test) data.
|
11 |
|
12 |
See [my Kaggle notebook](https://www.kaggle.com/code/dima806/70-dog-breed-image-detection-vit) and [my Medium article](https://medium.com/gitconnected/paws-and-pixels-creating-a-dog-breeds-classifier-with-googles-vision-transformer-431137422830) for more details.
|
13 |
|
14 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6449300e3adf50d864095b90/KdUJH1qZauUr5kargckRa.png)
|
15 |
|
16 |
```
|
17 |
Classification report:
|
18 |
|
19 |
precision recall f1-score support
|
20 |
|
21 |
+
Afghan 0.9753 0.9080 0.9405 87
|
22 |
+
African Wild Dog 1.0000 1.0000 1.0000 88
|
23 |
+
Airedale 1.0000 0.9885 0.9942 87
|
24 |
+
American Hairless 0.9841 0.7126 0.8267 87
|
25 |
+
American Spaniel 0.9054 0.7701 0.8323 87
|
26 |
+
Basenji 0.9659 0.9770 0.9714 87
|
27 |
+
Basset 0.9551 0.9770 0.9659 87
|
28 |
+
Beagle 0.9659 0.9659 0.9659 88
|
29 |
+
Bearded Collie 0.8614 1.0000 0.9255 87
|
30 |
+
Bermaise 0.9457 1.0000 0.9721 87
|
31 |
+
Bichon Frise 0.9551 0.9770 0.9659 87
|
32 |
+
Blenheim 0.9062 1.0000 0.9508 87
|
33 |
+
Bloodhound 0.9659 0.9770 0.9714 87
|
34 |
+
Bluetick 1.0000 0.9540 0.9765 87
|
35 |
+
Border Collie 0.8830 0.9540 0.9171 87
|
36 |
+
Borzoi 1.0000 0.9432 0.9708 88
|
37 |
+
Boston Terrier 0.5513 0.9773 0.7049 88
|
38 |
+
Boxer 1.0000 0.9655 0.9825 87
|
39 |
+
Bull Mastiff 0.9655 0.9655 0.9655 87
|
40 |
+
Bull Terrier 1.0000 0.9885 0.9942 87
|
41 |
+
Bulldog 0.9583 0.2614 0.4107 88
|
42 |
+
Cairn 0.8737 0.9540 0.9121 87
|
43 |
+
Chihuahua 0.9610 0.8409 0.8970 88
|
44 |
+
Chinese Crested 0.9750 0.8966 0.9341 87
|
45 |
+
Chow 1.0000 1.0000 1.0000 88
|
46 |
+
Clumber 0.9884 0.9770 0.9827 87
|
47 |
+
Cockapoo 0.7238 0.8736 0.7917 87
|
48 |
+
Cocker 0.9868 0.8621 0.9202 87
|
49 |
+
Collie 0.9630 0.8966 0.9286 87
|
50 |
+
Corgi 0.9881 0.9540 0.9708 87
|
51 |
+
Coyote 0.9560 1.0000 0.9775 87
|
52 |
+
Dalmation 0.9560 1.0000 0.9775 87
|
53 |
+
Dhole 0.9765 0.9540 0.9651 87
|
54 |
+
Dingo 0.8966 0.8966 0.8966 87
|
55 |
+
Doberman 0.9333 0.9655 0.9492 87
|
56 |
+
Elk Hound 0.9775 1.0000 0.9886 87
|
57 |
+
French Bulldog 0.8810 0.8506 0.8655 87
|
58 |
+
German Sheperd 0.6803 0.9432 0.7905 88
|
59 |
+
Golden Retriever 0.9767 0.9655 0.9711 87
|
60 |
+
Great Dane 0.8929 0.8621 0.8772 87
|
61 |
+
Great Perenees 0.9667 1.0000 0.9831 87
|
62 |
+
Greyhound 0.9750 0.8966 0.9341 87
|
63 |
+
Groenendael 0.9062 1.0000 0.9508 87
|
64 |
+
Irish Spaniel 0.8173 0.9770 0.8901 87
|
65 |
+
Irish Wolfhound 0.9239 0.9770 0.9497 87
|
66 |
+
Japanese Spaniel 0.9101 0.9310 0.9205 87
|
67 |
+
Komondor 0.9885 0.9885 0.9885 87
|
68 |
+
Labradoodle 0.8750 0.6437 0.7417 87
|
69 |
+
Labrador 1.0000 0.9091 0.9524 88
|
70 |
+
Lhasa 0.9231 0.5517 0.6906 87
|
71 |
+
Malinois 0.9756 0.4598 0.6250 87
|
72 |
+
Maltese 0.8958 0.9773 0.9348 88
|
73 |
+
Mex Hairless 0.7870 0.9770 0.8718 87
|
74 |
+
Newfoundland 0.9438 0.9655 0.9545 87
|
75 |
+
Pekinese 0.9333 0.9545 0.9438 88
|
76 |
+
Pit Bull 0.8969 1.0000 0.9457 87
|
77 |
+
Pomeranian 0.9121 0.9540 0.9326 87
|
78 |
+
Poodle 0.9759 0.9205 0.9474 88
|
79 |
+
Pug 0.9529 0.9310 0.9419 87
|
80 |
+
Rhodesian 0.9130 0.9655 0.9385 87
|
81 |
+
Rottweiler 0.9556 0.9885 0.9718 87
|
82 |
+
Saint Bernard 0.9773 0.9885 0.9829 87
|
83 |
+
Schnauzer 0.8684 0.7586 0.8098 87
|
84 |
+
Scotch Terrier 0.9506 0.8851 0.9167 87
|
85 |
+
Shar_Pei 0.9886 1.0000 0.9943 87
|
86 |
+
Shiba Inu 0.9286 0.8966 0.9123 87
|
87 |
+
Shih-Tzu 0.6957 0.9195 0.7921 87
|
88 |
+
Siberian Husky 0.9667 1.0000 0.9831 87
|
89 |
+
Vizsla 0.9355 0.9886 0.9613 88
|
90 |
+
Yorkie 0.9457 0.9886 0.9667 88
|
|
|
91 |
|
92 |
+
accuracy 0.9192 6104
|
93 |
+
macro avg 0.9288 0.9193 0.9161 6104
|
94 |
+
weighted avg 0.9288 0.9192 0.9161 6104
|
95 |
```
|